
AD-AOB 7 ~ TEXAS UNIV AT AUSTIN CENTER FOR CYBERNETIC STUDIES F/B 12/2
COMPREHENSIVE COMPUTER EVALUATION AND ENHANCEMENT OF MAXIMUM FL-ETC(U)
OCT 79 F GLOVER, D KLINSMAN, J MOTE NOOSI-7S-C-O222

UNCLASSIFIED CCS-RR-356 NL*" /mlhhElhlhI
IIIIIIIIIIIIIIflfflf
IEIIEEIIIEIIIE
EIIEEIIIEIIIIE
-EllEEElllllI
-EE-EIEIIEIo

6BLEYEV

CENTER FOR
CYBERNETIC

STUDIES
The University of Texas

Austinjexas 78712

DTICSELECTE
MAR 181980

B

DI DITIUIN FA-TEMENT__ _ _ _ _ _ _ _ A u

jppzwd bI pubMO 1O10S1

80 3 17 029

OEYEL2
Q~0 ~O~REHENS IVE gPMPUTER &VALUATJION

AND ENHANCEMEN~T OF *AXTHUH FLOW
~2.LGOTHMS ,

i: I by

.. Fred/Glover ,
Darwnl~inga *i Johp/Mote -

David/Whitman**

* Professor of Management Science, University of Colorado, Boulder,

CO 80309.

** Professor of Operations Research and Computer Sciences, The
University of Texas at Austin, BEB 608, Austin, TX 78712.

*** Systems Analyst, Analysis, Research, and Computation, Inc.,
P.O. Box 4067, Austin, TX 78765.

**** Systems Analyst, Analysis, Research, and Computation, Inc.,

P.O. Box 4067, Austin, TX 78765.

This research was partially funded by the U.S. Department of Trans-
portation, Contract No. DOT-OS-70074 andyY the Office of Naval
Research, Contract No. N00014-78-C-0222. Reproduction in whole
or in part is permitted for any purpose of the U.S. Government.

CENTER FOR CYBERNETIC STUDIES

A. Charnes, Director
Business-Economics Building 203E

The University of Texa DTIC
Austin, TX 78712

512-471-1821
___________________MAR 18 I=I I~UMON 8?AMEN A

DiodbuSELECTEDe

ABSTRACT

For a number of years the maximum flow network problem has at-

tracted the attention of prominent researchers in network optimization.

Since the ground-breaking work of Ford and Fulkerson, a variety of

algorithms featuring good "worst-case" bounds have been proposed for

this problem. Surprisingly though, there has been almost no empirical

evaluations of these algorithms.

-- The primary purpose of this study was to refine and streamline all

major classes of maximum flow algorithms using the recent developments

in network labeling and data organization techniques. To safeguard

against being swayed too heavily by preliminary analyses (and past ex-

perience in other network settings),we implemented more than one type

of data structure and associated processing techniques for most of the

algorithms. Additionally, e the resulting codes on four distinct

problem topologies.. t(As !NTrr TFSTF$,T'

During the course of our investigation we examined the two most

widely heralded general classes of algorithms for maximum flow network

problems--the label tree and referent algorithms. Over 50 codes were

developed and at least partially tested for these methods. In the pro-

cess we also developed and tested a new member of the referent class of

algorithms, called the implicit referent method, which proved far more

effective than all others.

In addition, we investigated a third type of approach which con-

* stitutes a special purpose variant of the primal simplex method. Pre-

viously, researchers have neglected primal methods in favor of more

classical labeling types of algorithms, first because the classical

methods were obvious and "natural", and second because simple choice

. i rules yield good worst-case bounds. Over twenty implementations of ar

proposed variant of the primal method were tested utilizivi alternative

2i

. -..

starts, pivot choice rules, and update techniques. Our computational

results show that the new primal simplex variant is fastest on two of

the four problem topologies and is second to the sub-referent method on

the other two problem topologies. In addition, the primal simplex

variant requires approximately one-third the computer memory required

by other algorithms and lends itself more readily to an efficient in-

core out-of-coia implementation.

ACESV A~ for
"To White boo

'NA4NOUCED 0
J4 $ 'T ' A T IO N -

.b. lp. m .- . -

1 4

1.0 INTRODUCTION

For a number of years the maximum flow networc problem has attracted

the attention of prominent researchers in network optimization. Since

the ground-breaking work of Ford and Fulkerson [9, 15, 16, 17, 183, a

variety of algorithms [1, 5, 6, 11, 12, 13, 14, 24, 25, 27, 28, 30, 31,

34] featuring good "worst-case" bounds have been proposed for this prob-

lem. Surprisingly though, there have been almost no empirical evalua-

tions of these algorithms.

Cheung [6] recently conducted the first significant computational in-

vestigation of maximum flow methods, testing several of the major approaches.

Although an important step in the right direction, Cheung's implementations

employ methodology and data structures originating at least a dozen years

ago [5].

In the past decade, however, advances in network implementation tech-

nology have been dramatic. Sophisticated labeling techniques and more

effective data structures have (a) decreased total solution time and/or

(b) reduced computer memory requirements [2, 4, 10, 19, 20, 21, 22, 23, 32,

31J. As a result, widely held beliefs about which algorithms are best for

particular problem classes have been steadily challenged and in some cases

completely overturned [10, 19, 21, 26, 32, 33]. This study likewise dis-

closes several misconceptions about maximum flow algorithms whose challenge

was overdue.

One of our primary purposes, therefore, has been to design and test

maximum flow implementations that make the most effective use of the recent

developments in network labeling and data organization techniques. To safe-

guard against being swayed too heavily by preliminary analyses (and past

experience in other network settings), we implemented more than one type of

data structure and associated processing techniques for most of the algo-

rithms tested. Additionally, we tested the resu]ting codes on four dis-

tinct problem topologies.

I.

r1

1?

r '-...

2

During the course of our investigation we examined the two most widely

heralded general classes of algorithms for maximum flow network problems--

the label tree and referent algorithms. Over 50 codes were developed and

at least partially tested for these methods. In the process we developed

and tested a new member of the referent class of algorithms, called the

sub-referent method, which proved far more effective than all others.*

In addition, we investigated a third type of approach which consti-

tutes a special-purpose variant of the primal simplex method. Previously,

researchers have neglected primal methods in favor of more classical

labeling types of algoritt'q, first because the classical methods were

obvious and "natural", and second because simple choice rules yield good

worst-case bounds for these methods. Recently, Cunningham [7, 8] has

partly removed the theoretical bias against primal simplex maximum flow

methods by deriving a computational bound for one of its variants (differ-

ent from the one we propose in this study). Although this theoretical

bound is not nearly as good as those for label tree and referent algo-

rithms, practical experience in the network area over the past decade

[4, 20, 21, 33] argues strongly for testing a derivative of the primal

simplex method which has proved highly robust and effective. We tested

over twenty implementations of our proposed variant of the primal method,

utilizing alternative starts, pivot choice rules, and update techniques.

Two of the approximately 70 algorithmic implementations of label

tree, referent and primal methods stand out far above all the rest. One

of these is an implementation of the new sub-referent algorithm, which

is dramatically faster than all contenders on most of the problems tested.

The other method that stands above the rest of the field is an implemen-

tation of the new primal simplex variant, which is fastest on two of the

problem topologies and is second in efficiency to the sub-referent method

on the other two problem topologies. In addition, the primal simplex

* variant requires approximately one-third the computer memory required by

other algorithms, and lends itself more readily to an efficient in-core

out-of-core implementat ion.

21
L

3

2.0 PROBLEM DEFINITION

Let G(N,A) be a directed network consisting of a finite set N of

nodes and a finite set A of arcs, where each arc k e A may be denoted as

an ordered pair (u,v) (referring to the fact that the arc is directed

from node u c N to node v c N). Associated with each arc k - (u,v) i"

a flow variable xk and an upper bound or capacity coefficient uk . Addi-

tionally, two specific nodes s c N and t c N are called the source and

terminal, respectively.
i

The maximum flow network problem may be stated as:

Maximize x0 (1)

subject to: -2 + Xk"(2
keFS(s) kERS(s) x -o (2)

x k + x k x 0 (3)
kEFS(t) keRS(t)

SFS() k + x k = 0, iCN- {s,t) (4)

kc i kcRS(i)

0 xk uk, for allk A (5)

xo 0 (6)

where FS(i) - {k:k- (i,j) e A) and RS(i) w {k:k - (j,i) e A). FS(i) is

called the forward star of node i and is the subset of arcs that originate

at node i. Correspondingly, RS(i) is called the reverse star of node i and

is the subset of arcs that terminate at node i. The complete star of a

node is defined as the union of its forward and reverse stars. Where there

* is no danger of confusion, we will also sometimes refer to the nodes that

are endpoints of a (forward, reverse, or complete) star as elements of the

star itself. It is standardly assumed that RS(s) and FS(t) are empty, and

hence sums of flows over arcs in these sets are often not included in (2)

and (3).

4

In the following sections, depending upon the algorithm and the data

structures employed, it si sometimes preferable to rewrite problem (l)-.(6)

in alternative equivalent forms. In each case, the logic behind the re-

structuring of the problem is given. I

To unify our discussions, the example network shown in Figure 1 is

used throughout to illustrate various aspects of alternative implementa-

tions. In this example, the source is node 1 and the terminal is node 8.

Numbers enclosed in parentheses on the arcs specify the lower and upper

bounds (O,uk).

FIGURE I

EXAMPLE NETWORK

3.0 EXPERIMENTAL DESIGN

3.1 Overview

Alternative implementation methods are evaluated in this study by

solving a diverse set of randomly generated maximum network flow problems

using the same computer (a CDC 6600) and the same FORTRAN compiler (MNF).

All codes were executed during periods of comparable demand for computer

use and were implemented by the same systems analysts with no attempt to

1°2 *

exploit machine hardware characteristics.

Even with these safeguards, minor differences between the solution

times of any two codes, for a single test run of e'ach, are of questionable

significance. For this reason, most of the problem networks were solved

five times (i.e., for five diff -ent source-terminal pairs) and the median

solution time reported. Each code makes use of a real-time clock routine

supplied by the computer vendor. Such routines can be accessed by a

FORTRAN subroutine call and are generally accurate'to two decimal places.

Problem data are input ("read in") to each code in exactly the same

fashion (arc by arc, in the same "random" order). However, the codes use

different data structures to store the networks. The total solution time

records the elapsed time after input of the network and prior to the out-

put of its solution. This includes the time required to initialize the

function arrays. However, codes that are able to store the networks as

originally input have an obvious advantage under this timing procedure.

Consequently, a second solution statistic for each problem mtasures only

the problem optimization time and disregards the time required to arrange

thX problem data in the function arrays and to retrieve the solution in a

suitable output form.

3.2 Test Problems

The primary objective of this research effort was to design a solution

algorithm that can be used to solve the large-scale maximum flow problems

that arise in the design and analysis of real-world transportation systems.

In order to evaluate the solution capabilities of the numerous algorithmic

variants and refinements that were studied, a data base of test problems

was required. The design of this data base was the focus of a considerable

amount of effort. A number of researchers in the network area were con-

tacted regarding their opinions on problem structures most appropriate for

|. . investigation.

As a result of this analysis, four different classes of test problems

were selected for the data base. Many members of each class of problems,

with varying numbers of nodes and arcs, and varying arc capacities, were

ii2,

-mn in

6

generated in order to analyze the effects of the problem dimensions on algo-

rithmic solution capabilities. Altogether, over one hundred and fifty test

problems were included in the data base.

Each of the four major classes of test problems will be described

briefly. A uniform probability distribution was used in all instances to

randomly select items such as nodes and upper bounds.

The first and simplest class of test problems consists of unstructured

or "random" networks. Such a network is constructed by initially identify-

ing the node set N (whose elements may be assumed to be numbered from one

to INI). The set of arcs, A, is generated by successively selecting or-

dered pairs of nodes, u C N and v c N - {ul thus creating an arc (u,v) for

each pair selected. Multiple arcs directed from node u to node v are not

allowed in this, or the other three, classes of test problems. The integer

upper bounds, or arc capacities, are selected within a pre-defined interval.

The source node, s, and the terminal node, t, are randomly chosen from the

elements of N.

Due to the simplicity of the arc generation process, this class of

problems possesses no specific underlying structure, and hence is referred

to as the random class. Twelve different sets of problem dimensions, RI,

R2,... ,R12, were selected for this class, each containing five different

problems. The specific problem dimensions are provided in Table I. Random

problems were included in the study because they represent the closest

analogy to test problems used by Cheung [61 and because most maximum flow

literature makes no reference to any particular problem structure.

The second class of problems is called the multi-terminal random class.

Unlike a random network, a multi-terminal random network possesses a small

degree of underlying structure. The source and terminal nodes for these

problems actually play the role of master source and master terminal

nodes. This results by assigning infinite capacities to all arcs incident

upon these two nodes, so that all nodes in the (forward) star of the sourceI..
node serve as "effective sources," and all nodes in the (reverse) star of

the terminal node serve as "effective terminals."

The overall impact of this slight generalization of the random network

structure is to create a problem that simulates a true multiple source and

f.

TABLE I

RANDOM PROBLEM

SPECIFICATIONS

ARC
PROBLEM JNI JAI CAPACITY RANGE

R1 250 1250 1-100

R2 250 1875 1-100

R3 250 2500 1-100

R4 500 2500 1-100

R5 500 3750 1-100

R6 500 5000 1-100

R7 750 3750 1-100

R8 750 5825 1-100

R9 750 7500 1-100

RI0 1000 5000 1-100

RI1 1000 7500 1-100

R12 1000 10000 1-100

multiple terminal network. While the objective of a random network problem

is to determine the maximum flow from the source node s to the terminal

node t, the objective of a multi-terminal random network problem is to

determine the maximum flow from the set of effective source nodes {vl(s,v) E Al

to the set of effective terminal nodes {ul(u,t) c A}. It is important to

distinguish between "true" and "simulated" problems because prior knowledge

|. that a problem contains multiple sources and terminals can be used to re-

design an algorithm to make it more effective for this situation. One goal

of this study was to pose maximum flow problems of alternative structures

without "informing" the algorithm in advance what those structures were.

Twelve different sets of problems, MRI, MR2,...,MR12, were selected for

the multi-terminal random class, and five problems were generated for each

set. All problems from a given set share the same problem dimensions.

8

Specific problem dimensions are indicated in Table 1I.

Multi-terminal random problems were included in the study because some

researchers have conjectured that referent algorithms are naturally de-

signed to work well on them. (That is, referent methods are innately less

blind to this type of model structure.) Our computational results support

this point of view.

TABLE II

MULTI-TERMINAL RANDOM PROBLEM SPECIFICATIONS

AVERAGE NO. OF
ARCS INCIDENT
ON EACH MASTER ARC

PROBLEM INI* JAI SOURCE (TERMINAL) CAPACITY RANGE**

MRl 250 1250 5.0 1-100

MR2 250 1875 7.5 1-100

MR3 250 2500 10.0 1-100

MR4 500 2500 5.0 1-100

MR5 500 3750 7.5 1-100

MR6 500 5000 10.0 1-100

MR7 750 3750 5.0 1-100

MR8 750 5825 7.5 1-100

MR9 750 7500 10.0 1-100

MRlO 1000 5000 5.0 1-100

MRl 1000 7500 7.5 1-100

MRI2 1000 10000 10.0 1-100

*There were five master source nodes and five master terminal
nodes.

**Excluding arcs entering or leaving source and terminal nodes.

I.

9

The third class of problems introduces additional structure into the

network. This problem class is called the transit grid class. The

source and terminal nodes again serve as a master source and a master
terminal, as in the multi-terminal random problems, implicitly creating a

set of effective sources and effective terminals. All nodes other than s

and t are referred to as grid nodes, which can be viewed as arranged in a

rectangular grid of r rows and c columns. Every adjacent pair of grid

nodes is connected by two oppositely directed arcs'whose capacities are

selected from a pre-defined interval.

Like the multi-terminal random class, this class of problems simulates

multiple source and multiple terminal networks (and the algorithms are not

amended to capitalize on this fact). Unlike the random and the multi-terminal

random networks, the additional structure of the transit grid networks

closely resembles that arising in urban transit planning networks. In this

setting, the grid structure captures the form of transportation routes in

the greater subuiban area. Source nodes represent major transit exchanges

or vehicle storage facilities and terminal nodes correspond to collection

nodes which are connected to key demand points within the city.

Eight different sets of problem dimensions were chosen for the transit

grid class. Again, five different problems were generated for each set of

dimensions. These sets of transit grid problems are referred to as TGI,

TG2,...,TGB. Table III contains the specific problem dimensions for these

sets.

The final class of test problems possesses the most elaborate structure.

This class consists of totally dense, acyclic networks involving an even

number of nodes. That is, every pair of nodes is connected by an arc directed

from the node with the smaller node number to the node with the larger node

number. The capacity of the arc (u,v) is 1 if v > u + 1 and is 1 + (u - J-IL2
2

if v = u + 1. Node I is the source node and node [N[is the terminal node.

Although somewhat artificial, this class of problems was included be-

cause it was expected to require a large number of iterations (starting from

a zero flow initial state) since the optimal solution is obtained when the

flow on every arc in the network is at its upper bound. For obvious reasons,

1'[

10

0~~ 0

1-4 -

H 0

Eo*4.4 - $

W 444~ 91
1-4~~~ 0 U0

0 nz 0. 101U)

u m 0

N-. 1-4H N
H ~0 >O

4)

cz 0
.,- 0 0 0 0 0 0 0 00

-.1 It. C4 N 0 0 W M . .4
__ 4 N 4 ' -4 cl cn 0t '.7 4.1 3.)

H a) U)
- U Ln 0 0 tn LA 0 0 > u

en m M~ -4 .-4 1~~-4 H 4 w.
-l % . . 0 '0 m' 0'. 44 0a

bo bo

-4 ~ en Nt C
4
4 %~L 0 r- c -4 -4 W

0Q 0 0 0 U U~ C u u V
H 1- E- E-4 F-4 r.H)0

04- W I

.1

*1 4

I] 111

this class is referred to as the hard class. Five problems, HI, H2,...,

H5, were considered differentiated by their dimensions. Table IV pre-

sents the relevant parameters.

TABLE IV

HARD PROBLEM SPECIFICATIONS

ARC
PROBLEM INI JAI CAPACITY RANGE

H1 20 190 1-82

H2 40 780 1-362

H3 60 1770 1-782

H4 80 3160 1-1522

H5 100 4950 1-2402

4.0 PRIMAL SIMPLEX VARIANT

4.1 Algorithm and Implementation Overview

To describe our specialization of the primal simplex method for the

maximum flow network problem, it is useful to rewrite problem (1)-(6) in an

equivalent form that makes it possible to isolate a particular basis

structure. The equivalent formulation is:.

Maximize x (7)

subject to:
c x k + 2. + x 0 0 (8)

kEFS(s) keRS(s)

x + xk -y =0 (9)
kcFS(t) k kcRS(t)

- + x 0 iEN-{s,t) (10)
kcFS(i) kERS(i) u

21• ,,, ' •

12

-x + y =0 (11)

o Xk uk k c A (12)

0 x0, y (13)

The preceding formulation arises by angmenting the original network

G(N,A) by an additional node associated with equation (11) and two additional

arcs associated with the variables x and y. Letting d denote the additional

node and G(NA) denote the full associated network, then N = N U {d) and

A = A U {(td), (d,s)}.

Problem (7)-(13) constitutes a special circulation format for problem

(l)-(6). Obviously, problem (1)-(6) could have been circularized more com-

pactly by simply' moving the right hand side of (2) and (3) to the left

hand side, thereby implicitly adding an arc from the terminal to the

source. The reason for using instead the format of (7)-(13) will soon

become apparent.

In our variant of the primal simplex method, the basis tree T(N,AT)

is distinguished by the choice of node d as the root. Furthermore, with-

out loss of generality, we may assume that arcs (d,s) and (t,d) are basic

and are thus in AT. Consequently, nodes s and t always hang from the root

d. This organization enables the remaining nodes N - {d,s,t} to be

partitioned into two subsets: those hanging below node s and those hang-

ing below node t. For ease of discussion we refer to nodes on the s-side

and t-side of the tree. (This node partitioning corresponds to a cut in

graph terminology.)

Two ways of storing the original problem data were tested for our

variant of the primal simplex maximum flow algorithm. The first, called

the random form, uses three iAI length lists, FROM, TO, and CAP, to

sotre the original problem data without arranging them in any particular

order. This effectively restricts the algorithm to simple sequential

1..

13

processing of the arcs, since the data structure does not allow Individual

forward or reverse stars to be accessed efficiently. The random form

data structure is illustrated in Figure 2 for the problem given in Figure

1. The list labeled ARC in Figure 2 is provided simply to facilitate in-

terpretation, and is not used in computer implementations of the random

form data structure.

FIGURE 2

RANDOM FORM

ARC FROM to CAP

1 1 2 4

2 2 6 1

4 5 6 4

S6 7 3

6 6 4 I

7 10 6 2

57 a 3
9 10 7 1

1o 10 8 2

12 9 1

13 9 10 I

14 10 9 4

1SI 9 4 1

16 4 10 S

it 3 42

to 4 5 I
19 1 5 2

i . 20 I 3 3
21 3 5 1

121
-t - ~ -

14

The second data structure used in the testing of the primal maximum

flow algorithm is called the forward star form. With this data structure

the arcs must be sorted according to common origid nodes, storing arcs of

a given forward star in contiguous locations in the arc data lists. Since

each arc in a forward star has the same from-node, and since the arcs are

groups by forward stars, it is unnecessary to store the from-node for

every node in the network (which would require an JAI length FROM array,

as in the random form). Rather, it is possible to.use an INI length

list, OUT, which points to the location in the arc data of the first arc
*m in each forward star. In addition to this INI length list, the forward

star form uses two IAI length lists, TO and CAP. This data structure is

illustrated in Figure 3. The lists labeled NODE and ARC in Figure 3 serve

simply as guides to aid understanding.

FIGURE 3

FORWARD STAR FORM

NODE OUT TO CAP ARC

I I - - - - - 00 2 4 1
2 4 5 S 2 2

3 5 3 3
4 7 6 4

5 9 5 1 5

6 11 4 2 6

7 13 5 3 7

a 14 10 5 8

9 15 2 1 9

10 1 6 4 10

11 22 ,7 3 11

4 1 12

8 3 13

9 1 14

4 1 15

10 1 16

a 5 17
6 2 18

7 1 19

a 2 20

9__ 4 21

1'RNA

9. V --....

4 15

In addition to the lists needed to store the original problem data,

these implementations of the primal simplex maximum flow algorithm re-

quire six INI length lists to efficiently store an update the basis tree

a and the corresponding primal and dual solutions. These lists are: the

predecessor node (PN) [4], predecessor arc (PA) [2], thread (THREAD) (4],

I depth (DEPTH) [3], node potential (POT) [3), and net capacity (NETCAP) [3J.
The predecessor node is an "upward" pointer in the basis tree. It identi-

fies the unique node directly above each node in the basis tree .(except

V .the root). The predecessor arc is the arc number of the basic arc connect-

ing a node to its predecessor node and provides access to the original

problem data. The thread, by contrast, is a circular list that links the

nodes of the basis tree in a top to bottom, left to right fashion, enabling

all nodes in any subtree to be traced in unbroken succession. The depth

of the node is simply the number of arcs on the unique path in the basis

tree from the node to the root, while the node potentials are the dual

variables associpted with the current basis tree. Finally, the net capa-

city is the amount of allowable flow change on the predecessor arc in the

dfrection from a node to its predecessor node. That is, if the predecessor

arc is pointed down (up) in the basis tree, then the net capacity of the

arc is simply the current flow on the arc (upper bound minus current flow).

I This unorthodox way of storing relevant solution data for the problem actu-

*ally simplifies the solution procedure. An example of a feasible basis

tree is given in Figure 4. The associated INI length lists are given in

Figure 5. The list labeled NODE in Figure 5 is provided simply to facili-

tate interpretation and is not used in computer implementation.

By associating a dual variable wi with each node i c N, the comple-

mentary slackness property of linear programming implies the following:

0

+ W= (14)

7d - 7t a 0 (15)

- i + iT a 0 for all (i,J) c {(t,d), (d,s)) (16)

12 l.

16

FIGURE 4

FEASIBLE BASIS TREE

3 2

Non Basic Arcs
a Capacity

6-(3.4) 6 10

7-(4.5)

9-(5,2) o
11 -(6,7)

12-(6.4)

13-(7.8)

15-(9.4)

FIGURE 5
NODE LENGTH LISTS ASSOCIATED WITH FIGURE 4

NODE PN PA THREAD DEPTH POT |IICAP

1 1i 23 " 1 3

2I 6 2 1 I

3 I 3 2 2 I 2

4 10 a 7 4 0 4

5 6 10 S 4 1 2

6 2 4 5 3 I 2

7 10 19 11 4 0 0

S I1 22 9 I 0 Go-3

. 9 5 17 10 2 0 5

1 10 9 21 4 3 0 3

it 0 0 -

" 2'.

r

17

Since redundancy allows the value of any one of the, i to be set arbi-

trarily, we elect to set wd d 0. This choice, made nathcal by the choice

of d as root, yields a solution to (14)-(16) such that Wi - I if node i

is on the s-aide of the basic tree and wi - 0 if I is on the t-side of

the basis tree. This property is illustrated in Figure 5.

It may be remarked that the node potentials associated with an optimal

basis tree also provide information regarding the minimum cut problem.

Specifically, the potentials indicate which side o. the cut the node lies

on; i.e., node i is on the s-side of the cut if and only if Wi - 1.

Arcs whose capacities define the capacity of the cut are also identified

by the node potentials: the capacity of arc (i,j) is included in the

capacity of the cut if i1 0 r J" Additionally, the arc is directed from s-

side (t-side) to t-side (s-side) if 1i W 1 (0) and 7T - 0 (M).
In view of the foregoing observations, the general form of the steps

for our variant of the primal simplex algorithm for the maximum flow prob-

lem may be summaized as follows:

STEP 1: [INITIALIZATION] Select an initial feasible basis tree rooted

at node d.

STEP 2: [DUAL SOLUTION] Determine the potential 71i of each node, accord-

ing to the preceding observations, that results by setting 7 d = 0.

STEP 3: [ENTERING ARC) Select a non-basic arc e from node i to node j

such that (a) iW -1, 7i -0, and x = 0, or

(b) ffi =0, i= 1, and x - e

If no such arc exists, stop. The optimal solution has been found.

STEP 4: [LEAVING ARC] If xe
= 0 (xe - u e), determine the maximum amount,

6, that flow can be increased (decreased) on arc (i,J) by changing

the flows on the unique path from node i to node j in the current

basis tree. If 6 > u , go to STEP 6.
STEP 5: [CHANGE OF BASIS] If x e u, set 6=-6. Let arc r be one of

the arcs that only allows a flow change of 161 in STEP 4. ChangeI.
the flow by 6 on the unique path from node i to node j in the

basis tree. Change the flow on arc e by 6. Replace arc r with

* r arc e in the set of basic arcs AT and update the basis tree
r labels. Go to STEP 3.

18

STEP 6: [NO CHANGE OF BASIS] If x = u , set 6 = -u . Otherwise sete e e

6 = U e Change the flow by 6 on the unique path from node i to

node j in the basis tree. Change the flow on arc e by 6. Go to

STEP 3.

The specific implementation of each step of the preceding algorithm

of course plays a major role in determining the overall efficiency of a

particular computer code. During the extensive testing of this primal

simplex maximum flow algorithm, over twenty alternitive implementations of

the basic algorithm were developed. These alternatives were used to deter-

mine the impact of the choice of the starting basis (STEP 1), selection of

the entering arc (STEP 3), and the selection of the leaving arc (STEP 4).

The same techniques, whose efficiency has been well-established, were

used throughout to update the list structures (STEPS 2, 5, hnd 6). We

exploited the fact that the unique basis equivalent path (for any entering

arc) contains the root node d to update the flows on the arcs in this path

in a single pasd. This one pass update is efficiently carried out by using

the predecessor node and depth functions (in conjunction with the net

capacity function).

The next subsections contain descriptions of the various start and

pivot strategies examined. The final subsection contains the results of

our testing.

4.2 Starts

Four basic implementations of STEP 1 were tested during the course of

this study. The first implementation is referred to as the LIFO label-out

start procedure. The basic steps of this procedure are:

STEP IA: [INITIALIZATION] Initialize the predecessor node function:

PS(d) = 0, PN(s) = d, PN(t) = d.

Initialize a node label function:

LABEL(d) - -1

LABEL(s) - -1

LABEL(t) = -1

LABEL(i) = 0 for all i c N - {s,t}

Set i = s.

1 2

19

STEP 1B: [NODE SCAN] For each arc (i,J) in the forward star of node i,

check the label status of node J. If LABEL(J) - 0, then set

PN(J) - i, LABEL(j) = LABEL(i) and LABEL(i) - J.

STEP iC: [NEXT NODE] Set i = LABEL(i). If i > 0 go to STEP lB. Other-

wise, the construction of the initial LIFO label-out tree is

complete.

This implementation uses the node label function (LABEL) as a depth

first sequence list. That is, each newly labeled node is placed at the

front of the sequence list. Since this approach only requires a single

pass through the arc data, it uses very little c.p.u. time to execute.

The creation of the necessary node function values are easily incorporated

into STEP lB so that all initialization is carried out during the construc-

tion of the initial basis tree.

The initial solution constructed by the LIFO label-out start proce-

dure exhibits the following characteristics: all arcs, basic as well as

non-basic, have hero flow; all nodes except the terminal and the root are

on the s-side of the basis tree; and all basic arcs, except (td) are

directed away from the root.

The second implementation of STEP 1 is called the FIFO label-out

start procedure. This start is identical to the LIFO label-out start

except that each newly labeled node is placed at the back, instead of the

front, of the sequence (LABEL) list. Thus it has the characteristics in-

dicated for the LIFO procedure.

The primary difference between the two methods is the shape of the

basis tree. FIFO, the breadth first start, tends to construct a wide,

shallow initial tree whereas LIFO, the depth first start, tends to con-

struct a narrow, deep initial tree.

The third implementation of STEP 1 that was tested is called the

balanced tree start procedure. Unlike the other implementations, this

procedure requires multiple passes of the arc data, and therefore more

c.p.u. time is required to execute the start. However, this start pro-

cedure, as its name implies, attempts to balance the number of the nodes

on the s-side and t-side of the basis tree, and was motivated by the fact

'Q1

20

that the only pivot eligible arcs (STEP 3) are those whose nodes are on

opposite sides of the basis tree. By balancing the number of nodes on

each side, we expected that the entering arc could be selected more effi-

ciently. The steps of the balanced tree start are outlined below.

STEP 1A: [INITIALIZATION] Initialize the predecessor node function:

PN(d) = 0, PN(s) = d, PN(t) = d.

Initiate a node label funcLion:

LABEL(d) = -1

LABEL(s) = -1

LABEL(t) = I

LABELi) - 0 for all i c N - {s,tj

Set i = s.

STEP IB: [NODE SCAN CHOICE] If LABEL(i) = -1, go to STEP ID. If

LABEL(i) = 0, go to STEP IE.

STEP 1C: [NEXT NODE] If a complete pass of the arc data fails to re-

label any nodes, go to STEP IF. Otherwise, select a node i.

Go to STEP lB.

STEP 1D: [SCAN DOWN] Set LABEL(i) - -2. For each arc (ij) in the forward

star of node i, check the label status of node j. If LABEL(j) = 0,

then set PN(j) i and LABEL(J) = -1. Go to STEP 1C.

STEP IE: [SCAN UP] Select an arc (ij) in the forward star of node i

such that LABEL(J) 1 1. If no such arc exists, go to STEP IC.

Otherwise let PN(i) f j and LABEL(i) = 1. Go to STEP IC.

STEP 1F: [FINAL PASS] For each arc (i,j) such that LABEL(i) = 0 and

LABEL(j) A 0 let PN(i) = j and LABEL(i) = 1.

The initial multiple passes through the arc data (STEPS 1C, 1D, and

IE) attempt to select as many arcs as possible that are either directed

away from the root node on the s-side or toward the root node on the t-side.

The final pass through the arc data allows any unlabeled nodes to be as-

- ~signed to the t-side by means of arcs directed toward the root. Like the

other two start procedures, all network arcs have zero initial flow. It

should be noted that it is unnecessary to repeat the initial steps until

L h

21

a pass of the arc data fails to add another arc to the tree (STEP IC).

The final start procedure tested, called the modified balanced tree

start, begins the final pass (a modified STEP IF) as soon as an initial

pass (STEPS IB-IE) adds fewer than n I nodes to the basis tree, or as soon

as a total of n2 nodes have been added to the basis tree.

4.3 Pivot Strategies

One of the most crucial aspects of any primal simplex network algo-

rithm is the pivot strategy that is employed to select a non-basic arc to

enter the basis. This corresponds to STEP 3 of the primal simplex maximum

flow network algorithm. Many different pivot strategies were developed

and tested during this study. This includes simple modifications of the

pivot strategies that have proven successful for more general network flow

problems [20, 21, 33], as well as new strategies developed from insights

into the special structure of the maximum flow network problem. The level

of complexity of.'these pivot strategies range from the simple sequential

examination of forward stars to a complex candidate list with a steepest

discent evaluation criteria. A brief description of each of the funda-

mental pivot strategies is presented.

In order for an arc to be pivot eligible its nodes must be on opposite

sides of the basis tree. In addition, its flow must be at the appropriate

bound. Specifically, arc k = (i,j) is a candidate to enter the basis if

and only if

(a) Iti = 1, iT = 0, and xk = 0 or

(b) i = O, IT= l, and xk = uk.

In case (a), arc k currently has no flow and is directed away from the

s-side and toward the t-side. It is advantageous to attempt to increase

flow on this arc by pivoting it into the basis. In case (b), arc k cur-

rently has as much flow as it can handle and it is directed away from the

t-side and toward the s-side. In this instance, it appears to be advan-

|- tageous to decrease flow on the arc, thus leading to a net increase in

flow from the source to the terminal. i-L example, in Figure 4 arc (4,5)

is eligible to enter the basis from its upper bound (cnse (b) pivot).

1L
Nt

22

In a sense, the occurrence of a case (b) pivot implies that the algo-

rithm previously made a "mistake" by putting too much flow on arc k, since

at this point it appears beneficial to decrease flow on the arc. A

statistical analysis of the test problems used for this study indicates

that the primal simplex maximum flow network algorithm tends to concen-

trate on case (a) pivots. For most of the variants of the basic algorithm,

over 98% of the pivots were of the case (a) type. This observation moti-

vated the development of some specialized pivot strategies that initially

concentrate on the case (a) entering arcs. This yields a two-phase (sub-

optimization) solution approach. During Phase I, only the case (a) arcs

are allowed to enter the basis, and during Phase II, any pivot eligible

arc is allowed to enter the basis.

The first class of pivot strategies is called sequential because the

arcs are examined sequentially. The simplest sequential pivot strategy

selects the first pivot eligible arc encountered to enter the basis. A

two-phase sequential pivot strategy restricts its initial pivots to the

case (a) type. The extent to which this restriction is made can have an

itmpact on the overall solution efficiency of the algorithm. At one ex-

treme, all case (b) pivots are postponed until the very end of the solution

process. That is, the algorithm suboptimizes the problem by just allowing

the case (a) pivots, then optimizes the problem by allowing both case (a)

and case (b) pivots. Another implementation of the two-phase sequential

pivot strategy restricts pivots to the case (a) type for the first p1

pivots (or the first 1)2 passes through the arc data).

The three sequential approaches are called, respectively, (1) SEQ/NS

(sequential with no suboptimization), (2) SEQ/CS (sequential with complete

suboptimization), and (3) SEQ/PS (sequential with partial suboptimization).

Clearly, SEQ/PS is the most general sequential pivot strategy since setting

P1 = 0(-) yields the SEQ/NS (SEQ/CS) pivot strategy.

The second group of pivot strategies are called candidate list

strategies because they involve the use of a list of arcs that are poten-

tial candidates to enter the basis 129]. These strategies operate by re-

stricting the choice for the entering arc to arcs contained in the candi-

ii

23

date list. Periodically, this list must be reloaded with a fresh set

of candidate arcs. The frequency of reloading the list, as well as the

length of the list, affect the solution efficiency of the algorithm.

Various criteria were studied to control the "quality" of the candidate

list. This quality is governed by both the choice of the arcs to place

in the list and the choice of the candidate arc to pivot into the basis.

Three criteria were considered in determining the best approach for

(re)loading the candidate list. The first criterion is sequential. That

is, arcs are loaded into the candidate list by sequentially examining the

arc data. The specific implementations of the sequential criterion are

labeled SEQ/NS, SEQ/CS, or SEQ/PS, depending upon whether no, complete,

or partial suboptimization is desired.

The second criterion for selecting arcs to be placed in the candi-

date list was motivated by the fact that the amount of difficulty in-

volved in carrying out the list updating procedure (STEPS 2, 5, and 6)

depends to a large extent on the number of arcs in the unique (basis

equivalent) path between the two nodes of the entering arc, which is

the path on which the flow will be changed from the source to the

terminal. Since the basis equivalent path (BEP) of any pivot eligible arc

contains the root, the number of arcs in this path is simply the sum of

the depth function values for the two endpoints of the incoming arc.

For these reasons, the second criterion used to reload the candidate

list restricts the selection of candidates to arcs whose basis equivalent

path contains fewer than p arcs. The choice of the cut-off value, p, is

dynamic in nature. Initially p is selected to be small, but to guarantee

optimality, p is eventually increased to INJ. The implementations of this

criterion are labeled BEP/NS, BEP/CS, and BEP/PS, depending upon the level

of suboptimization desired.

Computationally, the implementations of the BEP criterion is more

difficult than those of the SEQ criterion. However, the depth function

enables the number of arcs on the basis equivalent path of a pivot eligible

arc to be determined quite readily.

1"

24

The third criterion considered for selecting arcs to be placed in

the candidate list is a form of the steepest descent criterion. Only

arcs that cause a major change in the objective function are considered

as candidates. Since the objective of the maximum flow network problem

is simply to maximize the flow from the source to the terminal, this

criterion reduces to a largest augmentation criterion. Each arc placed

on the candidate list must allow a flow change of at least q units, where

the cut-off value q is selected dynamically. The three implementations

of the largest augmentation criterion are called AUG/NS, AUG/CS, and

AUG/PS. Because the determination of the allowable flow change asso-

ciated with a pivot eligible arc requires the complete traversal of its

basis equivalent path, implementations of the AUG criterion are computa-

tionally cumbersome.

Slight generalizations of these basic criteria were used to select

an entering arc from the candidate list. Depending upon the level of

suboptimization,,'the SEQ criterion simply selects the first pivot eligible

arc encountered in the candidate list, the BEP criterion selects the arc

in the candidate list with the fewest arcs in its basis equivalent path,

and the AUG criterion selects the arc that allows the largest flow aug-

mentation.

Additional considerations for candidate list strategies include rules

for controlling the length of the list as well as the frequency of re-

loading. In general, our tested strategies employ a dynamic length candi-

date list in which the number of elements is a function of the degree of

difficulty involved in locating pivot eligible arcs. Typically, this re-

sults in an initial candidate list of twenty to fifty arcs. As optimality

is approached, and the identification of pivot eligible arcs becomes

harder, tne length of the list is reduced to five or fewer arcs. Some

of the tested strategies also used a maximum pivot counter to restrict the

number of pivots between reloadings.

1. 4.4 Leaving Arc Selection

Only two criteria were considered for determining the leaving arc

r

25

(STEP 4) from the collection of those that restrict the amount of flow

change 6 (i.e., that yield the minimum ratio in the standard simplex test

for the outgoing variable). The customary choice is simply to select the

first arc that qualifies, and we used this in most of the primal simplex

codes developed for this study. However, we also tested a second strategy

that has been proposed as a mechanism for controlling cycling. This

strategy [3, 7, 8] is described in the next section.

4.5 Computational Testing

For the more than twenty variants of the basic primal simplex maximum

flow algorithms developed and tested during this study, the principal

questions we considered were:

1) What is the Sest starting basis? (STEP 1)

2) What is the best entering Arc selection rule? (STEP 3)

3) What is the best leaving arc selection rule? (STEP 4)

4) What is,'the best data structure for storing the original

problem data?

To some extent, the determination of the answer to one question depends

on the answers to the other three. For example, when the original problem

data is stored in the "random" format, it is virtually impossible to im-

plement any pivot strategy based on processing a node's forward star.

Choice of Leaving Arc

We first consider an appropriate choice for the leaving arc (STEP

4). As mentioned earlier, two strategies were tested in order to answer

this question. The first strategy is known as the network augmenting path

(NAP) rule. This strategy requires a special type of basis structure.

Particularized to the maximum flow problem, the NAP basis structure may

be characterized as one in which all basic arcs on the t-side of the tree

have a positive net capacity. Given an initial starting basis of this

form, the NAP rule assures all subsequent bases will have this form.

.

10

26

Of the starting procedures developed for this study, onLy the LIFO

and FIFO label-out starts yield an initial. basis tree with the necessary

NAP structure.

Two implementations of the primal simplex algorithm were developed

to test alternatives for selecting the leaving arc. The first code,

NAP, uses the network augmenting path rule to select the leaving arc.

The second code, NONAP, uses the simple "first minimum found" rule

(selecting the first arc that qualifies to leave thp basis). Both codes

use the same LIFO label-out start procedure, sequential entering arc

selection, and forward star data structure.

Table V presents the results of applying these two codes to the test

problem data base. Neither code appears to be a definite winner on the

random, multi-terminal, and transit grid problems, but the NONAP code

outperforms the NAP code on the hard problems. The reason is simple:

the special structure of the hard problem causes virtually every arc on

the basis equivalent path to be binding. The NAP code selects the out-

going arc as close as possible to the terminal node, whereas the NONAP

code tends to select the outgoing arc as close as possible to the enter-

ing arc. In fact, in about 90% of the nondgenerate pivots, the NONAP

code selected the outgoing arc to be the same as the entering arc. This

is a very easy pivot to perform since the structure of the basis tree

remains unchanged. On the other hand, the NAP code selected the out-

going arc to be the entering arc on only about 5% of the nondegenerate

pivots, resulting in more "hard" pivots than the NONAP code.

The reason that the NAP and NONAP codes performed basically the same

on the other problem topologies may be related to the fact that the enter-

ing arcs are not as likely to be binding. Indeed, limited sampling of

the test problems indicates the entering arc is binding for only 15% to

20% of the nondegenerate pivots for these other topologies.

Since the network augmenting path rule did not improve solution
I. .speeds and is not compatible with the balanced tree start procedures, all

further reported computational testing is concerned with codes that use

the first minimum found rule for STEP 3.

12o .-. 4

27

TABLE V

SOLUTION TIMES IN SECONDS OF

PRIMAL METHODS ON CDC 6600

PROBLEM NAP NONAP LIFO MODBAL SEQCS RANDOM

Ri .09 .10 .09 .10 .08 .11

R2 .23 .23 .19 .22 .18 .25

R3 .22 .23 .19 .22 .16 .21

R4 .34 .36 .32 .24 s.16 .23

R5 .53 .47 .38 .49 .33 .47

R6 .66 .66 .52 .58 .52 .58

R7 .40 .42 .40 .32 .27 .36

R8 .64 .64 .55 .60 .48 .51

R9 1.04 1.00 1.21 1.03 .84 .93

RI0 .90 .81 .73 .39 .46 .51

RII 1.36 1.22 .85 .68 .69 .77

R12 1.99 1.81 2.32 1.75 1.45 '1.62

MR1 .29 .32 .28 .28 .26 .28

MR2 .90 1.01 .77 .59 .58 .77

M3 ,.68 .87 .68 .61 .56 .58

MR4 .52 .60 .54 .34 .28 .42

MR5 1.25 1.18 1.25 .88 .83 1.04

MR6 2.22 2.02 2.08 1.34 1.49 1.92

MR7 1.40 1.24 1.00 .71 .64 .80

MR8 1.98 2.12 1.89 1.02 1.00 .95

MR9 4.53 4.41 3.48 2.70 2.52 2.90

MR10 1.36 1.09 1.16 .77 .70 .77

MR11 3.26 3.09 2.09 1.64 1.97 2.14

HP12 6.95 7.13 6.11 4.70 5.39 5.82

TG1 .28 .26 .45 .48 .21 .42

TG2 .21 .18 .52 .39 .16 .38

TG3 .60 .56 1.03 .86 .48 .75

TG4 .52 .49 .94 .80 .41 .79

TG5 .93 .96 1.87 1.56 .73 1.23

TG6 .73 .70 1.51 1.'21 .58 1.38

TG7 1.63 1.62 2.74 2.22 .96 1.91

TG8 1.56 1.50 2.50 1.99 1.12 2.02

Hl .07 .06 .10 .11 .06 .05

H2 .57 .52 .68 .65 .43 .42
H3 1.82 1.70 2.40 2.35 1.39 1.35

H4 4.22 3.98 4.35 4.43 3.22 3.09
H5 8.12 7.67 8.91 8.66 6.16 5.92

L
-7:

I

28

Choice of Start Procedure

Four basic start procedures (STEP I) were imp.emented. The first

code, referred to as LIFO, uses the last-in first-out or depth first

rule to construct the initial basis tree. The second code, FIFO, uses

the similar first-in first-out rule. Both of these procedures require

the arcs to be processed in forward star sequence. The balanced tree

start was implemented in the code BAL and the modified balanced tree

start was implemented in MODBAL. The MODBAL implementation uses the

parameter settings n1 = .10NI and n2 f .751N I which cause the final pass

to begin as soon as an initial pass fails to add at least 10% of the nodes

to the tree or as soon as the tree contains at least 75% of the network

nodes. Limited testing with other parameter settings indicated that

these values were quite robust across all problem topologied.

All four implementations used the same entering arc selection rule.

Specifically, a candidate list of length twenty was used. The SEQ/CS

criteria was useU to load the list and the BEP/NS criteria was used to

select entering arcs from the list.

The testing indicated that the LIFO and FIFO codes perform approxi-

mately the same in terms of solution time. The starting bases generated

by the two codes, however, are quite different. As expected, the LIFO

code constructs a thin, deep initial basis tree and the FIFO code con-

structs a fat, shallow initial basis tree. However, the structure of

the optimal basis tree does not resemble that of either initial tree.

The principal shortcoming of both codes is that they initially

place all nodes except the terminal on the s-side of the tree. This

makes the identification of eligible entering arcs somewhat difficult

during the initial pivots, as reflected by the fact that the average number

of arcs examined per pivot is much higher during the early pivots than

during the middle pivots for both the LIFO and FIFO code.

I. Computational tests comparing the modified balanced tree start

MODBAL and the standard balanced tree start BAL indicate MODBAL is

clearly superior. This superiority is most pronounced on the multi-
terminal random problem class. On selected problems in this class, MODBAL

1 2'

29

outperformed BAL on all but one problem.

Due to the similarity of the LIFO and FIFO times, and the superiority

of MODBAL over BAL times, only the results for LIFO and MODBAL are pre-

sented in Table V. These results indicate that the modified balanced tree

start is superior to the other start procedures tested, particularly for

the problem classes designed to simulate multi-terminal networks (i.e.,

multi-terminal random and transit grid).

Choice of Entering Arc

Although many codes were developed to test the impact of the entering

arc selection rule (STEP 3), only six of the codes will be presented in

any detail. All codes use the modified balanced tree start procedure,

the first minimum rule for selecting the leaving arc, and the forward

star form for storing the original problem data.

The first three codes, SEQNS, SEQCS, and SEQPS, were developed to

test the impact Qf suboptimization on overall solution speeds. SEQNS

uses the sequential pivot selection rule with no suboptimization. SEQCS,

on the other hand, uses the same sequential entering arc criterion, but

requires complete suboptimization of the problem using only case (a)

entering arcs before any case (b) entering arcs are allowed. SEQPS uses

the sequential criterion with partial suboptimization. Phase I (case

(a) pivots only) was terminated after p = .501N pivots.

Computational testing indicated that SEQCS is superior to SEQNS on

all but the smallest networks. The superiority of SEQCS is particularly

evident on the large multi-terminal random problems where SEQNS ran as

much as 602 slower than SEQCS.

The performance of SEQPS is harder to 6valuate. Neither SEQPS nor

SEQCS dominated the other. However, SEQCS is highly robust, yielding

good solution times for all problems, while SEQPS yields solution times

j whose quality is far more variable. Barring the possibility of finding

a value for the p parameter for SEQPS that improves its stability, the

SEQCS code is preferable for situations in which robustness is valued.

The next three codes tested use a candidate list of length twenty

to control the selection of entering arc. Each employs the same criterion
1'>,

30

for reloading and redimensioning the list: reloading occurs when all

pivot eligible arcs in the list have been used; redimensioning occurs

when a complete pass of the arc data fails to yield enough arcs to

fill the list (whereupon the dimension of the list is set equal to the

number of pivot eligible arcs actually found).

All three codes use the SEQ/CS criterion to load the candidate list.

The first code, referred to as CANSEQ, uses the SEQ/NS criterion to

select the entering arc from the candidate list, while the second code,

CANBEP, uses the BEP/NS criterion, and the third code, CANAUG, uses the

AUG/NS criterion.

CANAUG turned out to be a definite loser. The reason for its poor

performance is that for each pivot, the basis equivalent path of every

arc in the candidate list must be traversed in order to identify the

arc with the maximum minimum ratio. CANAUG tends to require fewer pivots

than the other codes tested, but its solution times ranged from 50% to

300% slower. Other implementations of the largest augmentation criteria,

including candidate list and non-candidate list codes with no and partial

saboptimization, performed just as badly.

Table V presents the solution times for SEQCS and CANBEP. In the

table, CANBEP is referred to as MODUAL since it is the same code used

to test the choice of starting bases. The performance of these two codes

is basically the same on the random and multi-terminal random problems,

but SEQCS dominates CANBEP on the transit grid and hard problems. SEQCS

runs up to twice as fast as CANBEP on the transtt grid problems.

A partial explanation of the poor performance of the minimum basis

equivalent path length criterion on the transit grid problems is that it

generates more pivots, both total and degenerate, than the sequential

criterion. For the transit grid problems, the lengths of the flow aug-

menting paths (non-degenerate basis equivalent paths) tend to be long.

By concentrating on the short basis equivalent paths, CANBEP ends up

doing more work than the approach used in SEQCS.

Choice of Data Structure

The last question considered regards the choice of data structure

for storing the original problem data. All codes previously discussed

31

made use of the forward star form. The best such code appears to be

SEQCS. A number of codes using the random form were also developed.

The best of these, simply referred to as RANDOM, uses the modified

balanced tree start procedure, the SEQ/NS entering arc selection rule,

and the first minimum found leaving arc selection rule. Table V pre-

sents the times for the best forward star form code, SEQCS, and the

best random form code, RANDOM. The results are fairly clear: SEQCS

is faster than RANDOM for almost all problems, except notably the hard

problems. The most pronounced superiority of SEQCS is for the transit

grid problems which have a large number of arcs incident on the source

and terminal nodes (problem sets TG2, TG4, TG6, and TG8). On these

problems SEQCS runs as much as twice as fast as RANDOM.

The overall conclusion from this computational testing of the

primal simplex maximum flow codes is that SEQCS is the most consistent

winner. To recapitulate, SEQCS uses the modified balanced tree start

(with nI = .ON4 and n2 = .751N1), the sequential entering arc selection

rule with complete suboptimization, the first minimum rule for selecting

thre leaving arc, and the forward star form for storing the original prob-

lem data.

5.0 LABLL TREE METHODS

5.1 Algorithm Features

All label tree methods may be viewed as variants of the original

Ford and Fulkerson algorithm [9, 15, 16, 17, 18]. These methods alter-
nate between a node labeling step and a flow augmentation step in which

the flow from s to t is increased. The methods terminate when the

*terminal node cannot be labeled in a sequence of label assignments start-

ing from the source.

The purpose of the 'labeling step is to identify a flow augmentation

path, which consists of a set of arcs connecting labeled nodes along

which additional flow may be transmitted from s to t. The allowable flow

change, 6, is the value of the maximum flow change which can be accommodated

by all arcs of this path while keeping their flows within bounds (hence

. i . .. i l]r' ' I

32

maintaining a feasible solution to (I)-(6)). During the flow augmentation

step, the flows on each arc in this path are adjusted by 6, i.e., are

increased by 6 if the arc's direction coincides with the path orientation,

and are decreased by 6 otherwise.

Generally speaking, the labeling step consists of scanning labeled

nodes and attaching labels to label eligible nodes. Node j is said to

be label eligible from node i if j is currently unlabeled and the flow

on arc (i,j) can be increased or the flow on arc (J,i) decreased. The

associated arc is referred to as flow eligible. Node i is scanned by

sequentially examining each of its incident arcs (into or out of node i)

and labeling the label eligible nodes. Thus, the labeling step creates a

tree structure, henceforth referred to as a label tree (or flow augmenta-

tion tree).

The labeling step terminates when the terminal is labeled since a

flow augmentation path has been determined. Consequently, while the

label tree resemjles the basis tree of Section 4, it usually contains

only a proper subset of the nodes and is therefore often much smaller.

The basic steps of label Lree methods are as follows:

STEP 1: [INITIALIZATION] Label node s and create a label tree T(NL,'A)

such that NL = {s} and AL Set L

STEP 2: [NODE SELECTION] If L = 0, go to STEP 6. Otherwise, select

some node i from the set L of labeled and unscanned nodes and

delete i from L.

STEP 3: [SCAN NODE] Scan node i assigning labels to all label eligible

nodes and add these nodes and arcs to the label tree T(NLA) and

the newly labeled nodes to L. If node t is unlabeled, go to

STEP 2.

STEP 4: [FLOW AUGMENTATION] Determine the allowable flow change 6 on

the unique path from s to t in the label tree and adjust the

I, .flows on the arcs of this path by 6.

STEP 5: (UPDATE LABEL TREE] Erase or update the label tree. If the label

tree is erased, go to STEP 1. Otherwise, adjust the label tree

and the nodes in L appropriately and go to STEP 2.

- I

33

STEP 6: (TERMINATE] Stop. A set of maximum flow values has been

determined.

To facilitate the discussion of alternative implementations of label

tree methods, we define the active star of node i to be the arcs of i's

complete star whose flows are capable of being adjusted by a positive

6 value (i.e., increased by 6 it the arc is directed out of node i, and

decreased by 6 if the arc is directed into node i). As before, we also

refer to the endpoints of arcs in a star (complete, active, etc.) for

node i as elements of the star--excepting node i itself. Thus, in parti-

cular, the arcs (nodes) in i's active star are precisely those that would

be determined flow eligible (label eligible) when scanning node i if none

of these elements were in the current label tree.

We envisioned the primary strategic possibilities for creating An

efficient implementation (version) of the label tree methods to be em-

bedded in the following considerations:

(a) the use of ; partition scheme that isolates the active star of each

node (to expedite the performance of STEP 3).

(b) the rule used in STEP 2 to select the next labeled node to scan.

(c) the portion of the label tree re-used in STEP 5.

(d) the contents of the label assigned in STEP 3 to a node in the label

tree.

Consideration (a) does not affect the composition of the label tree, but

does affect its speed of creation. In particular, this consideration ad-

dresses the fact that scanning a labeled node is a time-consuming process

and depends importantly on the way in which problem data are stored and

accessed. Considerations (b) and c) relate to the size, shape, and the

re-use of the label tree. The node label contents of consideration (d)

consist of one or two parts. One part only affects tree traversal and

label re-use. The other part, if present, determines the order in which

|o the labeled nodes are scanned.

The next subsection describes the alternatives explored in this

study for storing and accessing problem data, and their relevance to con-
sideration (a). Later subsections then address considerations (b)-(d).

L

34

5.2 Problem Data Storage, Labeling, and Partitioning

The first data structure used for storing the problem is called the

modified forward star (MFS) form. This requires th ree JAI length lists,

TO, XOUT, and XIN, to represent the original problem and its current

solution. The MFS form stores all arcs of a given forward star in con-

secutive locations, and further stores the forward star for node i just

before the forward star of node i + 1. As a result, it is unnecessary to

explicitly store the from node of each arc. Instead, the list of to nodes,

TO, is flagged (a simple negation) to indicate the beginning of a new

node's forward star. By eliminating the list of from nodes, this data

structure effectively restricts the algorithm to sequential processing of

the arc data.

In addition to the to node, the MFS form stores the allowable flow

increase, XOUT, and decrease, XIN, for each arc. Although equivalent to

the arc capacity and flow, these lists streamline the execution of STEP 3

of the basic labeling algorithm. Figure 6 illustrates the MFS form for a

feasible solution to the problem given in Figure 1.

Since this data structure restricts the algorithm to sequential pro-

cessing of the arc data (and hence sequential scanning of the nodes), STEPS

2 and 3 of the basic algorithm must be slightly modified. Specifically,

instead of examining the arcs entering and leaving the labeled nodes, the

algorithm must examine the arcs leaving the labeled and unlabeled nodes.

This means that arc (i,j) can be used to label node j i) if node i is

labeled (unlabeled) and node j is unlabeled (labeled).

The second data structure for storing the problem is called the

forward star linked reverse star (FSLRS) form. It represents a generaliza-

tion of the MFS form. The FSLRS form requires that the arcs are stored in

the same sequence (sorted by from nodes, in consecutive order) as the MFS

form. Unlike the MFS form, the FSLRS form allows the algorithm to pro-

cess the arcs in virtually any order. This added capability requires the

. use of two additional JAI length lists, FROM and LINK, and two INI length

lists, OUT and IN. The FROM list stores the from node of each arc, and

the LINK list serves as a reverse star linkage for the arcs. The OUT (IN)

1:

35

FI(;URE 6

MODIFIED FORWARD STAR FORM

ARC TO XOUT X I N

1 -2 3 1

2 2 0

3 3 1 2

4 -6 6 2

5 -5 t .0

6 4 0 2

7 -75 0 3

8 10 4 1

9 -2 0 1

10 6 2 2

11 -7 0 3

12 4 0 1

13 -8 0 3

14 -9 1 0

15 -4 0 I

16 10 1 0

17 8 5 0

18 -6 2 0

19 7 1 0

20 8 2 0

21 9 3 1

22 0

list points to the first arc in a node's forward (reverse) star. Figure

7 illustrates the FSLRS form for the example problem. This data structure,

although requiring virtually twice the core ot the MFS form, enables the

algorithm to scan the nodes (STEPS 2 and 3) in any order whereas the MFS

form is restricted to sequential scanning. This added flexibility is

used to improve the over-all solution characteristics of the labeling

t, algorithm.

The MFS and FSLRS forms can he implemented using four INI length

lists to represent the label tree. 'To of these lists, the predecessor

36

FIGURE 7

FORWARD STAR LINKED REVERSE STAR FORM

OUT FROM XOUT XIN 10 LINK IN

1 1 3 1 2 9 0

4 1 20 5 5

2 3 0

7 2 6 2 6 10 6

9 3 1 0 5 7 2

11 3 0 2 4 12

13 4 0 3 5 0 11

14 4 4 1 10 16 13

15 5 0 1 2 0 14

18 5I 2 2 6 188

22 6 0 3 7 19

6 0 1 4 15

7 0 3 8 17

a 1 0 9 21

9 0 1 4 0

9 1 0 10 0

9 5 0 8 20
10 2 0 6 0

10 1 0 7 0

10 2 0 8 0

10 3 1 9 0

I°

1.!

lD IA I .: * . i :
T

....... . .n.. [tim

37

node and predecessor arc are used in STEP 4 to augment the flow along

the flow augmentation path from s to t. The other two lists, the t;iread

and depth functions, are used in STEP 5 to update the label tree after

flow augmentation. These last two lists are not used if the "update"

consists of a complete erasure of the tree.

It is also possible to implement the FSLRS form using an additional

INI length list, L, to control the selection in STEP 2 of the nodes to

scan. Depending upon the implementation, the L list may be maintained

as a FIFO, LIFO, largest augmentation, or minimum depth sequence list.

The third data structure stores the problem in a fixed mirror arc

form, henceforth called the FIXMIR form. (This set of data structures

was developed in [4a].) To understand this form, note that it must be

possible to access the data for an arc (u,v) from either of.its two end-

points, depending on whether the flow is to be increased, (scanning from

u) or decreased (scanning from v). Moreover, when scanning from u it is

only necessary tp know the arc's net capacity in the forward-direction

(capacity minus current flow) and when scanning from v it is only necessary

tc know the net capacity in the reverse direction (current flow). In each

case, it is necessary to identify the endpoint of the arc opposite from

the node being scanned.

Thus, in particular, the relevant information for arc (u,v) is con-

veniently subdivided and stored in two places. If this arc is assigned

a numerical index k (by which we may then refer to (u,v) as the kth arc),

thh
then we may store the "opposite node" and net capacity values in the k h

and JAI + kth position of two arrays OPNODE and NETCAP. For the example

network, arc (2,6) may be considered to be the 4t h arc out of 21, with a

capacity of 8. If, at some stage of an algorithm, the arc's current flow

is 5, then OPNODE(4) = 6, OPNODE(25) = 2, NETCAP(4) = 3, and NETCAP(25)

5. Note that the original capacity of an arc is always equal to the sum

of its two stored NETCAP values, and so does not have to be stored separ-
I° ately.

Having recorded the information for an arc (u,v) in two different

places, we may just as easily regard this information as applying to two

different arcs, one from node u to node v, and the other from node v to

node u. Thus the OPNODE value for each of these two arcs may be viewed

38

as naming the to node. These arcs are, of course, intimately related in

that the OPNODE of one is actually the from node of the other. Moreover,

any change in the NETCAP value of one must be accompanied by a change

equal in magnitude and opposite in direction in the NETCAP value of the

other. Because of these symmetric relationships, it is unnecessary to

distinguish which of these two arcs corresponds to an original arc of the

problem (except for purposes of identifying the final solution), and each

arc is called the mirror of the other. Henceforth, in the FIXMIR data

structure, each of the two mirror instances of an original arc will be

viewed as a unique arc in its own right, and an arc index will be referred

to as the index under which such an arc's information is stored in the

OPNODE and NETCAP arrays.

To make the symmetry complete in all aspects, instead of recording

information about the two mirror instances of arc k in positions k and

A + k of OPNODE and NETCAP, this information could be recorded in

positions k and M - k where M = 21A I + 1. Then if h denotes either of

these two positions, the other position is M - h. This schema was tested

but rejected on two counts. The implementations of this study can be

utilized in both a subroutine setting and a "stand-alone" fashion. With

respect to subroutine situations, it is important to note that, by using

positions k and IAI + k to store arc data, the OPNODE array contains all

of the from nodes of the original arcs followed by all of the to nodes.

So, the OPNODE array may be instantly created by placing the from node

array immediately after the to node array in a common block. If the arc

data are stored in positions k and M - k, then the order of the entries in

the user's from node array must be reversed upon entering and leaving the

maximum flow subroutine. Further, our testing indicated that the next data

structure to be discussed is more suitable for stand-alone applications.

To make use of the OPNODE and NETCAP arrays it is desirable to be

able to access all arc indexes associated with any given node (in tile

I. role of from node) in a convenient fashion. This may be done by storing

all arc indexes for such a node sequentially in an array ARCNDX(I),

I = FIRST(NOIE) to FIRST(NODE + 1) - 1. Thus, for example, from Figure 1,

1.

r -

39

node 2 is an endpoint of the original arcs (2,6), (1,2), and (5,2) which

may be respectively indexed 4, 3, and 9 (out of 21 arcs). Then in FIXMIR

structhre node 2 takes the role of from node for the arcs (2,6), (2,1),

and (2,5) which are respectively indexed 4, 24 (= 21 + 3), and 30 (- 21 + 9).

Furthermore, if the first position I in ARCNDX for storing node 2's are

indexes is I - 4, then FIRST(2) = 4, ARCNDX(4) - 4, ARCNDX(5) = 24, ARCNDX(6) -

30. The arc indexes associated with node 3 would thus begin in the next

position I = 7 of the ARCNDX array (identifying th* last position for the

arcs associated with node 2 as FIRST(2 + 1) - 1). Since the arc indexes

of ARCNDX(I) for I = FIRST(NODE) to FIRST(NODE + 1) - 1 name all arcs asso-

ciated with NODE, this array actually records the complete star of NODE.

(However, in the FIXMIR structure, the complete star for any given node is

actually treated as a forward star, since the node is treated as from node.)

Figure 8 contains the FIXMIR data structures for the example network.

Using this data structure, the node scan of node i can be carried

out by checkingNETCAP to determine an arc's flow eligibility and then

checking the label status of the appropriate to nodes. However, this

procedure may be further streamlined by partitioning the arc indexes re-

corded in ARCNDX(I), I = FIRST(NODE) to FIRST(NODE + 1) - I into two con-

secutive groups in accordance with consideration (a), the first group

naming the arcs with positive net capacity (hence in the active star) and

the second group naming those with zero net capacity. This may be done by

introducing the array LAST(NODE), where all arcs in NODE's active star are

named in ARCNDX(L) for I = FIRST(NODE) to LAST(NODE). The likelihood of

computational savings by identifying the active forward star in this

partitioning scheme is apparent since the amount of effort to "re-

constitute" the partition is minimal and occurs only during the flow

augmentation phase.

In summary, several advantages are provided by the FIXMIR structure.

First, while additional arrays are introduced, the original arc data is

unaltered and easily retrievable in its original order. Second, the node

scan procedure is greatly simplified and accelerated. Third, the structure

readily admits the use of a partition which further simplifies the scanning

procedure and reduces the number of arcs examined.

40

FIGURE 8

FIXMIR DATA STRUCTURES

FIRST LAST A ARCN*I OPNODE NETCAP

3 ,3 3
4 4 PI 2 5 2

7 *a.. 3 2 4

10 11 4 6 8

15I 16 0 24 4 2
20 21 30 5 1

25 25 5 5 3

28 28 3 6 10 5

32 34 03 22 2 1

3740I 7 6 4

8 4 1
26 7 3

04 32 a 3

36 ~ 9PS 9 4

10 10 1

23 a 5

05 27 9 4

28 7 1

P6 2
12 6 2

25 1 0

06 31 1 0

42 1 0
P7 1 13 2 0

0$ 40 3 0

Pef 14 4 0

34 4 0

38 5 0

{ 17 7 0
. 35 3 0

39 9 0

is 9 0

) 19 6

1 21 10 0

29 10 0

10 0

40

FIGURE 8

FIXMIR DATA STRUCTURES

FIRST , ARCH** OPHODE NETCAP

3 3 3

7- 3- 22 4 "- -- T
10 IIP 2 f 4 6 8

15 16 02 24 4 2

20 21 30 5 1

25 25 P3 5 5 1 3

28 28 6 10 5

3432 03 22 2 1

37 4 P 7 6 4

4 1
26 7 3

04{ 36 9

6 9 1

10 10 1

23 81 5

a 27 9 4

28 7 1
11 a 2

P6 12 6 2

25 1 0

61 31 1 0

42 1 0

P7 13 2 0

33 3 0
0 40 3 0

PSf 14 4 0

34 4 0

08 38 5 0

4 41 5 0

1. 17 7 0

39 9 0

18 9 0

19 9 0
PlO 20 10 0

21 10 0

900 29 0' Ofo 37 10C

F!

41

The major disadvantage of the FIXMIR structure is the necessity to

access the ARCNDX array before retrieving information from the OPNODE and

NETCAP arrays. This shortcoming led us to consider a fourth data organi-

zation which eliminates the intermediate ARCNDX array.

The efficiency of the FIXMIR data structures depends on (I) the

storage format of the arc data and (2) the grouping of the arc indexes

into complete stars and active stars. It is desirable to maintain these

two properties but to eliminate the intermediate access array.

These objectives may be satisfied by the dynamic mirror, or DYNMIR

* structure, which arranges the arc data in the same order previously indicated

by the ARCNDX entries. The FIRST and LAST arrays point directly into the

arc data (if a partition is used). By ordering the data in this fashion,

it is no longer possible to maintain the entries of the OPNODE and NETCAP

arrays in fixed positions because these entries must be moved each time

an active star is altered. Further, when these entries are moved, it

may no longer be.possible to find an arc's mirror in Its original posi-

tion. Thus, for a given arc currently referenced by the arc index k,

the current index of its mirror is recorded in MIRROR(k). The dimension

of MIRROR, as the dimension of OPNODE and NETCAP, must be twice the number

of original arcs. Figure 9 presents the entries of the DYNMIR arrays for

the example problem.

Other than requiring only a single access to obtain individual arc

data components, the DYNMIR structure executes STEP 3 in the exact

fashion of the FIXMIR structure. The partition update of the active star

for this structure is somewhat more complicated: entries in both the

OPNODE and NETCAP arrays are swapped while some MTRROR entries need to be

modified accordingly.

While the DYNMIR structure allows highly efficient processing, its

practicality is rather limited. It is not suitable for situations which

I. .demand that the final arc flows be output in the same sequence in which the

arcs were originally input. The additional computational time and storage

required to recover the origindl sequence order overcomes the advantages

otherwise gained by improved speed of execution during the internal solution

phase. Rather, the DYNMIR structure finds its usefulness in those situa-

42

FIGURE 9

DYNMIR DATA STRUCTURES

FIRST ."LAS" A S".. OP ODE NETCAP MIRROR

1 3 00---- . 3 3 9
4 4 Pi 5 2 17

7 00eo"os 2 4 6
-im -- i- -i

10 P2 6 a 23

15 16 02 5 0 15

20 21 1 0 3

25 25 4 2 12

28 28 5 1 is

32 34 03 1 01
37 40 P 5 3 19

,"10 5 42

3 0 7

04 6 0 20

9 0 32-- -m- -

2 1 5
P4

22__

0 2
O5 3 0 8

4 0 S0

P6 4 1 13P, - - - 13
7 3 27

06 5 0 16

06 2 0 4

10 0 40

P7 8 3 29

07 10 0 38

6 0 21

P8 9 1 36

7 0 25

98 9 0 34

10 0 39
-- ai ,i I - -1

S 4 1 14
P9 10 1 41

a 5 30

1 0 37

I.a 0 28
Plo - - 26

0 8 2 31

6 2 24
9 33

S010~ 0 11

• _ -ii - I m

43

tions where it is adequate to identify an optimal solution simply by

naming arc endpoints and flow values or where the network is initially

organized in the complete star arc format (and the sequence of arcs within

any complete star is immaterial).

Despite the limited usefulness of the DYNMIR structure in applications,

the evaluation of its performance serves two purposes. First, it provides

a comparison with the implementations of Bayer [5] and Cheung [61 which

require that the problem network be in complete star format. Second, be-

cause this structure is more efficient than the others described, it pro-

vides an indicator of the best possible performances that can be obtained

via experimenting with considerations (b)-(d).

5.3 Label Tree Procedure

In treating consideration (d), the labeling schemes of earlier im-

plementations were greatly invluenced by the work of Ford and Fulkerson

[9, 15, 16, 17, 18], who proposed a two-part label. The first part con-

tains the index of the path predecessor of the labeled node. Thus, if node

j *is labeled when scanning node i (via an original arc of the form (ij) or

(j,i)), then the index i is stored as the first part of the label assigned

to node J. Node i and arc (ij) (or (j,i)), are referred to as the pre-

decessor node and arc, respectively, of node J. (This predecessor term-

inology is consistent with that employed in discussing the primal algo-

rithm.) The second part of node J's label contains the maximum allowable

flow change on the labeled path from the source to node J. As soon as

the terminal node is labeled, the algorithm accesses the second part of

the terminal node label to obtain the flow change to be made on the flow

augmentation path in executing STEP 4.

By contrast, most of the following implementations utilize only the

first part of the two-part label (the predecessor node index), and make

two additional passes of the arcs in the flow augmentation path (rather

than one) when the terminal node is labeled. The first pass computes 6

while the second performs the flow updates. This modification reduces the

1• -

P.

44

computational effort because the flow augmentation paths of most label

trees contain only a few of the arcs in these trees. Further, if the par-

titionfng scheme identifying active stars in either the FIXMIR or DYNMIR

data organizations is used, then the resulting streamlined node scan makes

the use of a single ("one-part") label even more attractive.

Another still more straightforward modification of the label contents

is employed in many of our label tree implementations: the predecessor

node index is instead replaced by a predecessor arc'index which is stored

in a node length array, PREARC. The reason for using PREARC is that the

standard prescription of maintaining predecessor nodes allows direct

accessing of arc data only if the arc data is stored in matrix form, that

is, where arc (ij) is accessed via nodes i and J. However, since each of

our four data organizations store the arc data sequentially, it is more

reasonable to store the predecessor arc number. This avoids a search each

time information other than the identity of an arc's endpoints is required.

5.3.1 FIFO

The simplest methods for implementing the labeling step determine the

sequence in which the labeled nodes are selected for scanning by the

sequence in which they are labeled. The first of these methods utilizes

a node length array, NEXNOD ("next node"), to store labeled nodes sequen-

tially and then scans them in that order. Commonly referred to as a

First-In First-Out or FIFO node scan, this method adds nodes to the label

tree level by level. Thus, the label tree is created in breadth first

fashion.

5.3.2 LIFO

Another common method stores the nodes sequentially but scans the

last rather than the first labeled but unscanned node. The sequential

Sls NEXNOD of labeled and unscanned nodes is processed as a push down

stack removing nodes from the end rather than the beginning. This scan-

ning order is commonly described as Last-In First-Out or LIFO.

We considered two versions of the LTFO procedure. The first, called

simply the LIFO scan, examines the arcs out of a labeled node only until

a label eligible arc is encountered. Then the opposite endpoint of this

45

arc is scanned and so on. This method requires an additional node length

array to indicate the index of the last arc examined in each active star.

The second version of the LIFO procedure maintains the depth first

character of the node scan but does not require the additional node length

array of arc numbers. This version scans each labeled node completely--

i.e., examines each element of its active star--before scanning the next

node. We implemented this version in two ways, which we dubbed the modi-

fied LIFO scan and the threaded LIFO scan. The fortmer simply selects the

most recently labeled node (not yet scanned) as the node to scan next.

The latter maintains the list of labeled nodes in thread order, and after

scanning a labeled node, scans its thread successor. The thread must be

revised each time the scan of a node succeeds in labeling at least one

new node, since this must alter the scanned node's thread successor. This

produces the situation in which the thread successor (hence the next node

to be scanned) is the first node which was labeled by its predecessor node.

5.3.3 Label Re-Use

Ford and Fulkerson [15, 16, 17, 181 proposed erasing all labels after

each flow augmentation step and initiating the next .pplication of the

labeling procedure anew at the source node. Later investigators [14]

have shown that a portion of the labels created in the prior labeling

phase may be retained, requiring only a subset to be erased.

The subset of labels to be erased may be identified in the following

manner. For arcs in the flow augmentation path with an updated net

capacity value of zero, the first blocking arc is defined to be that arc

(u,v) which is closest to the source node. Assuming without loss of

generality that arc (u,v) is directed away from the source, the subtree

hanging from node v must be deleted from the label tree. This subtree is

referred to as the leaving subtrue while the remaining subtree which contains

the source is called the main subtree.
It may be necessary, however, to rescan (or partly scan) some of the

* main subtree nodes. For example, it suffices to rescan main subtree nodes

labeled after node v, thereby detecting if a flow eligible arc exists from

one the these nodes to the leaving subtree. In the case of a FIFO node

scan, the nodes contained in the leaving subtree cannot be determined

1

46

efficiently. Consequently, when using the FIFO procedure, the labels for

all nodes labeled after node v are erased and the node scan recommences at

node u.' (This procedure is simplified if node v is the terminal node. In

that case, the label for node v is erased and the node scan recommences at

node u.)

In the thread node scan, a thread trace is used to erase the labels

of the nodes in the leaving subtree before recommencing the node scan at

node u. An additional node length array (DEPTH) i! used to record the

depth of each labeled node so as to determine which nodes are in the

leaving subtree.

More complex options for erasing and resetting labels exist, but they

require the maintainence and updating of additional arrays that render these

options unattractive.

5.3.4 Largest Augmentation

A third method used to scan the labeled nodes is referred to in the

literature as the method of the largest (or maximum) augmentation f6, 12].

This method constructs a label tree by identifying and labeling a label-

eligible node j for which the allowable flow change is maximal. A two-

part label which records allowable flow changes as well as predecessors is

essential in this case.

The largest augmentation niethod has been reported in the literature

as computationally inefficient. However, our findings suggest that this

conclusion is more a result of the previous implementations rather than

of the method itself. For example, Cheung's implementation requires a node

length pass of the second (flow change) part of the label array in order

to select the next node to be scanned. This extensive processing of the

label yields long solution Limes.

We propose rather that the label tree be constructed using an address

calculation sort in which the addresses of the sort array correspond to
allowable flow change values. This approach requires an additional array,

SARRAY, which contains MAXS entries, where MAXS denotes- the maximum arc

capacity of the arcs in the active star of the source node. For each rlow

augmentation value d, I _ d nAXs, SARRAY(d) points to the next node having

a flow augmentation value of d. These nodes appear in OVER, a node length

47

overflow array. These two arrays, SARRAY and OVER, may be conceived as

(potentially) forming MAXS lists which are processed in LIFO order. For

example, if k is a node which has an allowable flow augmentation value of

d and node j is now found to have the same value, this is indicated by

setting SARRAY(d) = j and OVER(J) = k. An additional node length array,

LABLF, can be utilized to maintain the second portion of each label, the

current flow augmentation value for each node.

SARRAY is processed and the node scan is performed in the following

way. At the beginning of each labeling step, all of the entries in

SARRAY, LABLF, and OVER are set to zero. STEP 1 is completed by labeling

the source node and setting its imputed flow change value to MAXS. (No

labels are retained from the prior labeling step.) STEP 2 is performed by

finding the largest index d for which SARRAY(d) (=i) is nonzero. Then

node i is scanned. For each arc (i,j) in the complete star of i, the

imputed allowable change value dl, via each flow eligible arc (i,j) is

computed. If th6 current value of LABLF(j) is d2 and dI is greater than

d2, then LABLF(J) is reset to d and node j is removed from SARRAY(d2) and

added to SARRAY(dI). By construction, LABLF(i) will not be changed and is

permanent after node i is scanned.

Then each of the nodes having the same allowable flow augmentation

value as node i are scanned. When no more nodes have that value, a node

having the next highest value is added to the label tree and the arcs in

its complete star examined. The labeling procedure terminates when SARRAY

is emptied. It is important to note that the sole purpose of LABLF is to

facilitate the update of the temporary flow augmentation values.

While these refinements clearly improve upon the standard form of the

largest flow augmentation procedure, we propose an additional refinement

that results in what we call the modified largest augmentation procedure.

In this approach, during the examination of each flow eligible arc in the

complete star of the labeled node currently being scanned, each unlabeled

endpoint receives a permanent label. The scan order of labeled nodes is

unchanged: this modified method still chooses to scan the arcs in the com-

plete star of a node with the largest flow augmentation value. However,

only a single predecessor arc label is required and the labeling procedure

terminates as soon as the terminal node is labeled.

as soon a

r,.

48

The modified largest augmentation method will not, of course, always

identify a path from source to terminal with maximum net capacity. How-

ever, it tends to examine fewer arcs per labeling. (It also requires one

fewer node length array.) Our development and testing of this modified

approach, in place of the standard largest flow augmentation approach,

was motivated by the findings of other researchers Jiat the standard

largest augmentation procedure is inferior to other label tree procedures.

Three versions of the modified largest augmentation scan were developed.

The first, referred to as MAXAUG, uses the SARRAY and OVER lists to scan the

nodes in a straight-forward manner. It should be noted that t1 k: require-

ment that SARRAY is an MAXS length list effectively restricts the use of the

MAXAUG scan to problems for which MAXS is small.

The fact that MAXS is infinity for the multi-terminal random and

transit and network problems motivated the development of two refinements

of the modified largest augmentation scanning procedure. The first of these,

referred to as BUCAJG, can be thought of as using a MAXS + 1 length SARRAY

list. The first MAXS entries in the list point to nodes which allow from

I to MAXS units of flow change, and the last entry in the list points to

nodes that allow over MAXS units of flow change. That is, the last entry

corresponds to an infinite width bucket. This implementation reintzo-

duces the list to maintain the allowable flow change values for those

nodes which allow LABLF more than MAXS units of flow change.

The second refinement of the modified largest augmentation scanning

procedure is referred to as MODAUG. Like the BUCAUG approach, MODAUG uses

an infinite width bucket at the end of the SARRAY. However, to reduce

storage requirements the LABLF array is not-used. So, the exact amount of

allowable flow change is unknown for any node in the last position of the

SARRAY list. MODAUG, therefore, augments flow by MAXS + 1 units even if

I. .the arcs on a flow augmentation path could accommodate a larger increase.

5.4 Computational Testing

The initial phase of testing label tree implementations was devoted

to determining the most efficient Implementations for each of the node

scans (FIFO, LIFO, and modified largest augmentation) and for each of the

special data structures (FSLRS, FIXMIR, and DYNMIR). Then the performances

49

of the resulting codes (and that of the sequential code using the MFS data

structures) wcre evaluated with respect to the test problems.

5.4.1 Initial Testing Phase

Three computational refinements designed to improve code performance

were analyzed. First, we examined the effects of label re-use schemes for

FIFO and LIFO node scans. Our conclusions in this area coincide with those

of earlier researchers [141. The testing uniformly indicated the advis-

ability of label re-use schemes although the actual savings in optimization

time varies according to implementation and network problem topology. In

some cases, the label re-use strategy is overwhelmingly superior. For ex-

ample, re-using labels generated by the thread node scan on transit grid

problems reduced optimization times by 80%.

We next investigated the length of SARRAY in the modified largest

augmentation node scan for aetworks with large arc capacities (as in the

multi-terminal r~ndom and transit grid problems). We implemented the three

approaches discussed in Section 5.3 in the following fashion. The MAXAUG

and BUCAUG node scans were implemented using the FSLRS structure and the

MODAUG node scan was implemented using both the FIXMIR and DYNMIR struc-

tures. MAXS was set to he the largest ordinary (i.e., non-infinite) arc

capacity.

The third general area of investigation involved the efficiency of

schemes to partition the arc data. All three of the FSLRS, FIXMIR, and

DYNMIR approaches performed better than the associated nonpartition m, thods.

Using the FSLRS structur.s. nearly all of the arcs in the flow augmentation

paths are labeled while examining the forward stars. Consequently, it be-

came apparent that a two-phase or suboptimization approach should be

developed. During the first phase the maximum flow problem is suboptimized

by examining only the arcs in a node's forward star. Since the arcs of the

forward star are stored in contiguous locations of the data arrays, pro-

cessing a forward star is "easier" than processing a reverse star. The

second phase of the optimization procedure considers the arcs in both a

node's forward and reverse (i.e., complete) itars. This procedure greatly

1

50

reduced the number of arc examinations. The partitions employed in the

FIXMIR and DYNMIR structures similarly reduced the number of arc examina-

tions because the initial zero flows on all original arcs yield zero net

capacities for their mirrors, which are therefore not scanned.

5.4.2 Secondary Testing Phase

Since three node scan alternatives and four data structure alter-

natives were testea in the various implementations,.we use the syntax A/B

to distinguish among these implementations, where A identifies the type of

node scan and B refers to the type of data structure employed.

The first phase of testing culled out the clearly inferior combinations

and reduced the number of label tree codes under consideration to eleven.

These include: a sequential access code, SEQUEN/MFS; three FIFO codes,

FIFO/FSLRS, FIFO/FIXMIR, and FIFO/DYNMIR; three LIFO codes, LIFO/FSLRS,

THREAD/FIXMIR, and THREAD/DYNMIR; and four modified largest augmentation

codes, MAXAUG/FSLRS, BUCAUG/FSLRS, MODAUG/FIXMIR, and MODAUG/DYNMIR.

The optimization times and, where applicable, total solution times

of these codes for tile problem sets are presented in Table VI. (As dis-

cussed in Section 3.1, total solution time records the elapsed time after

input of the network and prior to the solution output. Optimization time

measures internal solution time and disregards the time required both to

arrange the problem data in the function arrays and to retrieve the solution

in a suitable output form.) For most of the problems, the node scan of a

specific implementation affects optimization much more than does the set

of data structures used to store the original arc data. Equivalently, the

performance times and statistics of one implementation is indicative of

those of other implementations which employ the same node scan and store

the original arc data differently. So, we inserted counters into some of

the codes (one per node scan method) and re-solved a subset of the problems

in order to interpret code performance. For the sake of brevity and exposi-
tional clarity, the complete statistics are not presented here but may be

obtained from the authors. Less detailed statistics are employed to help

explain the results shown in Table VI. The next subsection discusses the

efficiency of label tree implementations for the random and multi-terminal

1.

51

zz

. °

FS A Is-A E9 3A A7, AFO A AA

S-.-.-.-.-.---'- - -"

u 0

w-= 1- oa a- - ;Z

, .0 ' O N..~ N d

7. NO - ------

. J .'-,ro

_~

A A01A - Is! F! -' - - -

0

;I .Z 1 .2 .0 C 2

-- P, 0.0 .. i*r,..r.O ~ iC

52

random test problems, while subsequent subsections cover the transit grid

and hard problems.

Random and Multi-Terminal Random Networks

Codes employing the FIXMIR data structures tend to exhibit the best

total solution times for the random and multi-terminal random problems

while the codes implementing the DYNMIR structures obtain the best optimi-

zation times (exclusive of translating randomly ordered arc data into the

data formats required for solutions). (See Table VI.) From best to worst

(for both total solution times and optimization times) the node scan methods

rank as follows: modified largest augmentation, sequential, FIFO, and

finally, LIFO.

The excellent performance of the modified largest augmentation method

on the random problems stems from the extremely low number of labelings

required by this approach. This, in turn, results from a high average flow

increase per augmentation, which is twice the average increase for FIFO

trees. The label trees generated by the modified largest augmentation

method are smaller than those generated by the otehr label tree methods

and, for the first two problems, the percentage of network arcs examined

per labeling step exceeds only that of the thread trees.

SEQUEN/MFS is about 25% slower than the modified largest augmentation

codes because the MFS data structure does not allow the algorithm to con-

centrate on arcs with labeled from nodes. Instead, many irrelevant arcs

(e.g., connecting pairs of unlabeled nodes) must be accessed by SEQUEN/MFS

in order to locate the feu good arcs that enable additional nodes to be

labeled.

The average label trees generated by the next to worst approach, the

FIFO node scan, contain over 80% of the nodes. Although about half of the

labels are retained, the average number of arcs examined per labeling ex-

ceeds that of the modified largest augmentation approach by 10% to 90%.

The label trees are broader and much shallower than those of the modified

largest augmentation method. However, the average flow increase per flow

augmentation path is half that of the modified largest augmentation method,

6i

53

while the number of labelings increases from 25% to 100% and the total

number of arcs examined more than doubles.

As' the solution times indicate, trees generated by the worst approach,

the LIFO scan, are constructed "too quickly." While the average number of

arcs examined per labeling step is the best among the tested codes, the

average flow augmentation path is very long and admits a very small average

flow increase. Thus, the number of labelings is prohibitive.

The average label trees generated by the node -scan methods for the

multi-terminal random problems resemble those for the random problems.

However, more nodes are labeled and more arcs are examined per labeling.

While the average flow augmentations remain about the same, the total

maximum flow values greatly exceed the respective values of the random

problems. So all of the codes experience an order of magnitude increase

in the number of labelings, number of arcs examined, and total solution

times.

Transit Grid Networks

Remarkably, the LIFO label tree implementation, which was the worst

for the random and multi-terminal random problems, performs better on the

transit grid network problems than the FIFO, modified largest augmentation,

and sequential approaches.

Indeed, the LIFO strategy is well suited to the transit grid network

topology. Its average label trees include less than 60% of the network

nodes, and of these, over 75% of the labels are retained for the next label-

ing step. Together these two factors indicate that few arcs need to be

examined during each labeling step--the percentage is less than 5% for each

of the two small problems. These very low values arise because the thread

node scan order is particularly suited to this topology. Not only are there

many arcs entering the terminal node but the transit grid structure yields

I. .nearly identical label trees from one iteration to the next. Further, the

average flow augmentation paths for each of the label tree methods are

shorter than those of the two previous topologies and permit a substantial

average flow increase.
p.

54

Again, the sequential approach is the second best of the label tree

implementations. This may be due to the numbering system used in con-

structing the transit grid networks. Specifically, the nodes can be pic-

tured as being numbered from left to right in the grid. Since arcs connect

adjacent grid nodes, the sequential node scan is able to systematically move

from right to left through the network. Unlike the case with the random

and multi-terminal random networks, SEQUEN/MFS does not encounter, in the

transit grid problems, as many "useless" arcs connecting pairs of unlabeled

nodes.

The FIFO approach appears less well suited to the transit grid network

topology. The large number of highly capacitated arcs which connect the

source node to the grid nodes produces shallow broad trees. On the one

hand, the average FIFO flow augmentation paths for the transit grid prob-

lems are shorter and accommodate a much larger flow increase than those

generated for the two previous problem topologies. Further, the extreme

breadth of the trees tends to limit the number of erased labels: two-thirds

of the labels are retained as opposed to one-half for the two previous

t6pologies. As impressive as these figures may seem, those of the thread

trees are much better. Further, the FIFO label trees contain many more

nodes than those of the thread trees and, by the nature of the node scan,

examine appreciably more arcs.

The modified largest augmentation implementation performs poorly on

these problems. This approach examines many more arcs and labels more nodes

than any other implementation. The effect is to yield the longest solu-

tion times of any of the label tree methods on the transit grid problems.

Hard Networks

Ranked from best to worst on the hard problems, the label tree methods

performed as follows: LIFO, FIFO, modified largest augmentation, and then

sequential.

Since most flow augmentation paths contain only arcs having a unit

net capacity, label re-use is not quite as effective as with the prior

topologies. Two label tree methods, however, are rather effective in ex-

I,

55

ploiting the initial order of the arc data. For each node i t, the first

arc of the flow eligible arcs in the complete star is the arc (i,i+l). The

remainihg arcs in the active star immediately follow in ascending to-node

order. The LIFO methods tend first to scan the opposite endpoints of the

initial and the final arcs in the appropriate active stars. The arc data

of these latter arcs are exchanged with newly saturated arcs in the partition

update phase. The modified largest augmentation methods process the network

arcs similarly. Of the arcs in the active star of-node i 0 t, only arc

(i,i+l) may have a net capacity exceeding unity. Since the remaining arcs

in the active star all have a unit net capacity value, their opposite end-

points share the same location in SARRAY. So, the latter arcs in the active

star of node i(0 t) are accessed after the arc (i,i+l) since common entries

in SARRAY are stored in LIFO order. The shared characLteristic of both arc

scans is that arcs in the middle of the active stars are accessed last.

The FIFO node scan provides a comparison with these approaches since

it does not advaptageously exploit the arc data order. Of the three methods,

FIFO examines the largest number of arcs and posts the largest solution times.

The modified largest augmentation method examines the least number of arcs.

However, each network contains only a few distinct capacity values and so

SARRAY contains many zero values. The overhead in processing this list

results in solution times nearly as long as those of the FIFO approach.

While the LIFO approach examines more arcs than the modified largest

augmentation method, its solution times are the best of any obtained by

the label tree approaches. The poor performance of the sequential approach

may be attributed to the fact that the MFS structure requires the examination

of all arcs in each forward star whereas the partitioning approaches con-

centrate on the arcs that allow flow increase. Since the optimal solution

to a hard problem corresponds to all arcs at their upper bound, the MFS

structure is inappropriate.

6.0 REFERENT METHODS

6.1 Algorithm Features

• * . Label tree approaches normally find only one flow augmentation path

for each application of the labeling procedure; but there may exist several

1 - I

56

such paths which consist of arcs connecting the labeled nodes. Following

the lead of E. A. Dinic [111, several researchers have presented algorithms

which Modify the label tree approach so that one application determines all

flow augmentation paths containing the least number of arcs [6, 24, 28].

Rather than creating a label tree, the labeling procedure first creates a

label subnetwork. Constructively, this subnetwork consists of all nodes

labeled in the formation of a FIFO label tree and all arcs that are flow

eligible from a node labeled at a depth d from the'source to a node labeled

at depth d + 1 from the source.

The label subnetwork may be viewed as arising by "filling in" a FIFO

label tree with all flow eligible arcs that connect some node in the tree

to another at a depth one greater. As a result of using a FIFO label

sequence, the path to every node is a shortest path (by the depth measure),

and every flow eligible arc from a "shallower" to a "deeper" node in the

FIFO tree must automatically be in the label subnetwork (i.e., the deeper

node must be exaptly one deeper).

The referent, finally, is the portion of this subnetwork consisting

ortly of the arcs which actually lie on paths from the source to the terminal.

Once the depth labels are attached, the referent arcs may be identified by

starting at the terminal and in a backward pass isolating the referent star

(the subset of the active star contained in the referent) for each node en-

countered during a FIFO label sequence back to the source. A series of

forward traces then send as much flow as possible through the referent.

This description of the referent approach corresponds essentially to

Dinic's original proposal, as implemented in 161. More recent variants in-

troduce changes in flow augmentation sequences and other embellishments. A

loose framework for describing the referent methods is as follows:

STEP 1: (LABEL SUBNETWORK CREATION]

a. [INITIALIZATION] Label s and create a label subnetwork

Lsn(N ,A) such that N = {s) and A = 0. Set L = (sI.I.L L L L=
b. [NODE SELECTION] If L = 0, go to STEP 5. Select some node

I from the set L of labeled and unscanned nodes. Reset

L =1 - {i).

57

c. (SCAN NODE] Scan node i assigning labels to all label eli-

gible nodes and add these nodes (and implicitly the appro-

priate flow eligible arcs) to the labl subnetwork Lsn(N L,A)

and add these nodes to L. If node t is unlabeled, go to

STEP lb.

STEP 2: [REFERENT CREATION] Identify those label subnetwork nodes which

are on some flow augmentation path from s to t. Thase nodes are

the referent nodes. %

STEP 3: [FLOW AUGMENTATION] Process the referent arcs in the active star

of each referent node until no more flow may be transmitted from

s to t.

STEP 4: [ERASE REFERENT] Erase the referent. Go to STEP la.

STEP 5: [TERMINATE) Stop. A set of maximum flow values has been deter-

mined.

The primary strategic possibilities for creating efficient implementa-

tions of referent methods include the following considerations:

(a) the method employed in STEP 2 to identify the referent nodes

(b) the use of a partition scheme to expedite the performance of STEPS 1-3

(c) the procedure employed in STEP 3 to augment flow through the referent.

These considerations do not affect the particular referent chosen but mater-

ially affect the speed of its creation and processing.

6.2 Problem Data Storage

With the exception of the label contents, referent methods utilize the

same data structures as label tree methods. However, as the following two

subsections indicate, referent creation and.processing ideally require that

the referent arcs be accessed as readily from one arc endpoint as from the

other. Although not fully exploited by previous implementations, the

mirror arc concept is particularly well suited to these operations. Hence,

we implemented referent methods using the FIXMIR and the DYNMIR data

structures.

1-

58

6.3 Label Subnetwork and Referent Creation

The referent approaches of [6, 11, 13, 24, 28J create the label sub-

networl and referent by a two-part approach employing two labeling steps.

A forward labeling step begins labeling at the source node and forms the

label subnetwork. A backward step, starting at the terminal node, deter-

mines which of these labeled nodes and associated arcs are in the referent.

(A third step processes the referent.) For the example network, if the

arc data is stored using the FIXMIR or DYNMIR data btructures, then the

label subnetwork of Figure 10 results. The corresponding referent appears

in Figure 11.

FIGURE 10

LABEL SUBNETWORK

1 4

Ik"

I9
. 1-

A4

59

FIGURE 11

REFERENT

4 6

The use of the FIXMIR and DYNMIR data structures substantially ac-

celerate the forward labeling step (which in some referent methods generates

more--or different--information about the label subnetwork than in others).

In the simplest form of the forward step, a label subnetwork is created by

slightly modifying the procedure used to create FIFO label trees. The

only difference is that depth labels rather than predecessor arc labels are

used, where each labeled node is assigned a depth one greater (from the

source) than the node scanned when the label was assigned. (Node s gets a

depth of zero.) All otehr depth labels (for "unlabeled" nodes) are infinite.

1i

60

Among the referent approaches appearing in the literature, Dinic's

method [11] and Malhutra, Kumar, and Maheshwari's method [281 (hereafter

referred to as the MKM method) have storage requirements comparable to

label tree methods. Many of the other referent approaches are unattrac-

tive for large-scale applications since their implementation requires con-

siderably more storage than do the label tree, Dinic's, or MKM's methods.

Furthermore, Cheung compared the performance of his implementation of

Dinic's method with some of these other methods [61.and found Dinic's ap-

proach to be uniformly superior from an empirical standpoint, in spite of

the fact that some of the other methods have better worst case bounds. (The

situation is reminiscent of the empirical performance of the primal simplex

method against methods with superior theoretical bounds.) Consequently,

only Dinic's method and the 1KM method were used to provide the foundation

of the approaches we tested.

Dinic's Method
o

Dinic's original method is a simple three-pass algorithm in which the

first two passes respectively create the depth labels and the referent

sLars, and the third pass seeks flow augmentation paths through the refer-

ent.

We did not implement Dinic's algorithm in this form, in spite of

Cheung's findings that this produced the best of the methods he tested.

The reason is that our use of the FIXMIR and DYNMIR data structures, which

neither Dinic nor Cheung envisioned for application to maximum flow prob-

lems, not only streamlines the operations standardly performed, but makes

alternative ways of processing the referent capable of being executed in

highly economical ways. In particular, we propose new two types of methods

derivative from the Dinic methodology: the super-referent approach and the

sub-referent (or implicit referent) approach. Both of these referent ap-

proaches collapse the three-pass labeling process of Dinic's method into

two passes, although each generates different types of information and
I. carries out different opevations on the way.

1

61

The Super-Referent Method

The super-referent method utilizes the first pass to set up both

distance labels and a super-referent star for each node encountered. The

collection of all super-referent stars includes precisely the arcs of

the label subnetwork, as earlier defined, but organized in reverse fashion,

so they may be processed effectively on the second backward pass, without

requiring that the network finally be traced again in a forward pass. The

method is called the super-referent method because 'the structure it records

is a superset of the referent structure recorded by Dinic's method.
q-.

To generate the super-referent stars, each arc that qualifies for

inclusion in the label subnetwork--as an element of an active star whose

opposite endpoint is deeper than the node currently scanned--is added to

the super-referent list for the arc's opposite endpoint. This is done in

the FIXMIR and DYNMIR data structures by accessing mirrors and re-arranging

elements in the partition so that the super-referent star is in consecutive

positions within'the complete star. (An extra node length array is re-

quired for the additional "internal" partition. Alternatively, incurring a

substantial penalty in increased memory, the process could be made slightly

more efficient by allowing two additional arc length arrays to create the

super-referent stars without re-arranging elements.)

When the backward pass is initiated from the terminal, only the super-

referent star of each labeled node is processed during the node scan. How-

ever, the backward pass will now automatically scan only the referent nodes

and arcs, because for each node actually in the referent (as contrasted

with those only in the label subnetwork), the super-referent star will con-

sist precisely of referent arcs. The remainder of the processing of the

backward pass uses virtually the same pointers and logic as the sub-referent

approach, which we now describe.

I, The Sub-Referent Method

The sub-referent method does not attempt to set up any part of the

referent at all on the initial forward pass, but--as in Dinic's original

method--simply assigns distance labels to the nodes. However, the ensuing

4'

62

backward pass undertakes to do all the processing required to generate an
"essential portion" of the referent. We call it the sub-referent method

becausd the essential portion is typically only a proper subset of the

full referent structure. More particularly, the backward pass immediately

sets about identifying flow augmentation paths, where each step is or-

ganized in such a fashion that only referent paths are traced. In the

process, some referent paths are automatically excluded because they are

no longer augmenting paths by the time they are ready to be considered.

Thus, this approach only implicitly traces the referent structure.

To describe the approach, we define the reverse referent star of a

node to be the subset of referent arcs whose opposite endpoints have

smaller (rather than larger) distance labels than the node itself. (The

reverse referent star will coincide with the super-referent.star for nodes

in the referent.) Since this arc set is not identified on the forward pass

of the sub-referent method, its members are culled on the backward pass.

This culling is tacilitated using the FIXMIR and DYNMIR structures by

noting that an arc qualifies as a member if its mirror is in the forward

star of the opposite node and if the distance label satisfies the pre-

viously indicated stipulation.

As soon as an element of a node's reverse referent star is identified,

a special poiater identifies the position of this arc, whereon the scan of

the node is temporarily discontinued, and the scan is immediately resumed

at the opposite node for this referent arc. In this way the scan follows a

strict LIFO pattern, moving from the terminal to the source. When the

source is encountered the maximum allowable flow change is made, and the

scan resumes at the node heading the last blocking arc (closest to the

terminal), advancing the special pointer by at least one for each path

arc whose net capacity drops to zero.

To avoid unnecessary tracing of dead end paths, whenever a referent

star for a aprticular node has been exhausted (which may be checked im-

mediately when a net capacity is driven to zero, or deferred until the node

is reached on a subsequent scan), this node may be "removed" from all re-

verse referent star lists simply by setting its distance label back to

infinity. More extensive reverse scans to probe for sequences of nodes

63

which may be disconnected in domino fashion are possible, but were not

tested because they require expensive computer overhead with inadequate

promise of compensation.

Backtracking occurs when there are no further reverse referent star

elements for the node currently being scanned. This is accomplished by re-

setting the scanned node's distance label to infinity and in this case re-

turning to the path predecessor of this scanned node, resuming in typical

fashion. A backtracking step initiated from the terminal node results in

termination of the entire process.

Comparative analyses of the steps of the. super-referent and sub-

referent approaches led us to anticipate that not only should both of

these method be superior to the original Dinic approach, but that the

sub-referent method should be superior to the super-referent method.

The solution times reported in Table VII confirm this expectation.

MKM's Method

The MKM algorithm augments flow through the referent in the follow-

ig manner. The algorithm first determines the flow potential for each

node in the referent. This value is the smaller of two sums of allowable

flow increases; the sum for all referent arcs entering the node, and the

sum for all referent arcs leaving the node. A node with minimum flow

potential is determined. This node is called the reference node and its

flow potential is termed the reference potential. The method then attempts

to transmit a flow from the source to the terminal through the reference

node equal to the reference potential. When the flow potential a, some

node i becomes zero, then all remaining referent arcs in FS(i) and RS(i)

are removed from the referent and the updated flow potentials computed.

Processing of the current referent terminates when the flow potential of

every node is zero.

|. .Since two passes are required to assign depth labels and to determine

those nodes which are in the referent, neither the sub-referent nor the super-

referent approach may be used to implement the MKM method. Further, the MKM

flow augmentation approach is completely different from that of standard

label algorithms. Instead of forming a flow augmentation path from the

source to the terminal, the MKM algorithm forms a flow augmentation sub-

64

network from the source through the reference node to the terminal. This

subnetwork is not generated via a labeling procedure and the amount of

flow (reference potential) to be transmitted from 'the source to the terminal

via this subnetwork is known prior to the generation of the subnetwork.

The disadvantage posed by this flow augmentation approach is that

during the processing of a single referent, individual referent arcs may

be contained in several flow augmentation subnetworks and hence be accessed

several times. Our computational results indicate-that these features proved

to be a major limitation.

Efficient implementation of this approach requires several additional data

structures. The SUMIN and SUMOUT arrays contain the sum of the arc net

capacities for the referent arcs entering and leaving each referent node.

(To ease the computational effort SUMIN(s) and SUMOUT(t) are respectively

assigned the same values as SUMOUT(s) and SUMIN(t).) For each referent node,
the flow potential over the referent arcs is equal to the minimum of the

associated SUMIN- and SUMOUT values. A node having the minimum flow

potential value, REFPOT, is selected as the reference code. The REFPOT

ffow value, the reference potential, is then sent along the path from the

source throush the reference node to the terminal node.

The storage of the subnetwork arcs on which flow is changed (in a flow

augmentation step) is completely different from the storage of flow aug-

mentation path arcs. The nodes of the referent are stored in a node length

array, REFER. All of the nodes at the same depth are grouped together so

that nodes at the same depth in the subnetwork may be easily located. The

amount of flow which must be sent through each of these nodes is stored in

another node length array, NODFLO.

Flow is augmented in a two-part process. In the forward flow step,

flow is sent from the reference node to the terminal. For each node n in

this part of the subnetwork, NODFLO(n) units of flow must be moved forward

to those nodes which are in the active forward star of n and are in the

|. referent at the next level. The appropriate entries in REFER are flagged

(if currently unflagged). After all NODFLO(n) units have been moved, then

the next flagged node in REFER is processed. The backward flow step is

analogous to the step forward. In this case a demand for REFPOT units of

'I..

65

flow is transferred through the referent from the reference node back to

the source node.

Ab the end of a flow augmentation step, the flow potential value for

the reference node (and possibly other referent nodes) is now zero. This

node and all referent arcs which either enter or leave it are removed from

the referent by destroying the node's label. Removing these arcs may then

reduce the flow potential value for some other referent nodes to zero. A

final node length array, DELETE, is used to store these nodes until they

can be removed from the referent. After all nodes are removed from the

referent, the next referent is created.

6.4 Computational Testing

The computational testing for the referent approaches was performed

in two parts. First, a preliminary version of the sub-referent approach

was implemented. The difference between this version, called PRE, and

the final version is that PRE does not employ a partition to isolate the

arcs in each active star. The performance of PRE was compared to that of

an implementation, called MKM, based on the approach of Malhutra, Kumar, and

Maheshwari. MKM, like PRE, does not employ the active star partition. The

final phase of testing compared the performance of the final version of the

sub-referent method to an implementation of the super-referent method.

Both MKM and PRE were implemented using the DYNMIR data structures.

Since both methods set up the distance labels identically on the forward

pass, any differences in optimization time between the two methods may be

attributed to differences in processing on subsequent passes.

The optimization times of these two codes for the problem sets are pre-

sented in Table VII. (As discussed in Section 3.1, total solution time re-
cords the elapsed time after input of the network and prior to the solution

output. Optimization time measures internal solution time and disregards

i. the time required to arrange the problem data in the function arrays and to

retrieve the solution in a suitable output form.) The preliminary sub-
referent approach is clearly superior to the MKM method, yielding smaller

times for each problem set. Further, the difference becomes more pronounced

as the density of the individual referents increases.
.1

66

C 0 4 f -' -N.4 N r-.V * Ln 97 4M% O% o 4 F..r @ ~4 '

I !-4 -- (4 4" M 414C* 4. N e s-

-4, .40W0' 1

tn -- - -- - - -- - -- -
w 0 -u

4~~ ~ 44 .4 ('

u

4c In M r'e('n~~- .-LM

%D Ln s -.4N IT v Ln a

n4- n-4I -)r - -4 - 'Z C-

..

O-4-4

CN -44

67

This result is independent of the underlying network problem topology

and indicates the relative inefficiency of the MKM flow augmentation approach.

Not only does the MKM approach require several more lists to augment addi-

tional flow from the source to the terminal but individual race may be ex-

amined many times. By contrast, after the forward pass that assigns dis-

tance labels, the sub-referent approach "examines"--or more precisely,

stops the pointer at--each arc in the complete star of a referent node at

most once. %

This ability of the sub-referent approach to restrict its examination

of arcs appears to be critical. To check this hypothesis, we also imple-

mented and partially tested a variant which also applies only distance

labels on the forward pass but utilizes a FIFO node scan to process the re-

verse referent stars on the backward pass. The resulting optimization times

were extremely poor.

Based on the findings of these initial test comparisons, we developed

an improved version of the PRE implementation which utilize the active star

partition. We then tested and compared this version, entitled SUB, with

SUP, an implementation of the super-referent method.

The results in Table VII indicate that the swapping of arc indexes

(in the case of the FIXMIR data structures) or arc data (in the case of

the DYNMIR data structures) does not enhance algorithmic performance over

most problem topologies. Indeed, this approach is useful only for very

special network topologies such as the hard problems.

Isolating the active star produces the most efficient implementation

in terms of both optimization time and total solution time. Significantly

fewer arcs are examined during label subnetwork creation; this is indicated

by the excellent code performance as the number of nodes and arcs increases.

In fact, the increase in optimization times corresponding to an increase in

either of these parameters is surprisingly slight.
i.

7.0 CONCLUSIONS

This section presents a comparison of seven of the best implementa-

tions of the basic maximum flow solution methods. Specifically, from

r- 0

68

Section 4.4, SEQCS was selected as the best all-around primal simplex maximum

flow code. Four label tree codes were selected from Section 5.4. The first

two, FIFO/FIXMIR and FIFO/DYNMIR, incorporate the "collective wisdom" of

contributors to the original label tree school of thought. These two codes

make use of the best refinements [12, 14, 27] of the original algorithm of

Ford and Fulkerson [15, 16, 17, 18]. The next two codes, MODAUG/FIXMIR and

MODAUG/DYNMIR, are the best overall label tree codes. Finally, two codes

from Section 6.4, SUB/SIXMIR and SUB/DYNMIR, were selected as the best im-

plementation of the referent maximum flow algorithm.

Comparisons between different codes can be made on three grounds:

(1) computer memory requirements, (2) optimization time, and (3) total

solution time. The best code, with respect to each criterion, is reasonably

clear for a given problem topology. However, each criterion yields a

different winner. Consequently, researchers and practitioners must base

their choice of algorithmic approach on their personal evaluation of the

relative importace of these criteria in a given setting.

Table VIII presents the amount of core storage required to store the

problem data for each of the seven codes. Clearly, the primal code is the

best code in terms of this criterion since it requires roughly one-half to

one-third of the core of the other codes. The superiority of the primal

approach is even more pronounced when the maximum flow problem is embedded

as a subproblem in a more general solution system. In this case the rela-

tive value of computer memory is increased since the maximum flow subproblem

must share memory with the master problem and possibly other subproblems.

Table IX presents the optimization times and total solution times (in

parenthesis) for each of the seven codes. Total solution time is the

optimization time plus the time required to sort the random problem data

into the appropriate order. That is, for the primal code total solution

time includes the time to sort the arcs into forward star form. For the

I. codes using the FIXMIR structure, total solution time includes the time

necessary to set up the fixed mirror data structure. For both the primal

and the FIXMIR codes, total solution time includes the time required to re-

sort the arc flows into the original problem order. Total solution time is

not reported for codes using the DYNMIR structure since these codes can only1.

69

TABLE VIII

MEMORY REQUIREMENTS

NUMBER OF ARRAYS REQUIRED

CODE INI IAI MAXS

SEQCS 7 2 0

FIFO/FIXMIR 4 6 0

FIFO/DYNMIR 4 6 0

MODAUG/FIXMIR 5 6 1

MODAUG/DYNMIR 5 6 1

SUB/FIXMIR 5 6 0

SUB/DYNMIR 5 6 0

i.

- .-

r7 70

M n0 ,W0%L O0 0O -4 -1kn0 (Nr-r -~O 4 4 c4 -L% - -4 -4 m tr-m- M -40 Go-44.

w~~~~ co -t% 0 o0

w . - - - -~ -.. % a. r.- - - 14

0-o D -- - 0 a 0 w4. .00O

caC- 0V'j .- ,s ct~ "0 .- -40f 0 0O% N l OD , r4 'NO

-4 40

-4

'0 e

C50 00

u

o - -. -"-.-'- - - - - - -z
0 z z z rz0O sc

0 N'. .D '-4 U-1 ~z0

Z DL nw n -1c LA :r 0 m w 'm Doom M D M O r, ,N a,

<2 0 . - C
I- 0 0-44 NMWWWWW (NO -40w

-4 e4. N4 00-4-Ifn -

oe - - - - -' -% - -- - -- - - - - - -----

0 0 0 0 000 0 0 0 0 0 0 r

10 r- rj 4 a 0 5Q sn s t0 ' D'-t w C s u O
O~~~sOO%-~~~ U'Os uL4~S.4 4.!(

IL 0 ;9 m 3

0-4(N~ ~~~~~~~ F- .0 - cj ~ C~.4''U

71

output the solution for the arcs arranged in the sequence that the code

finally generates, and cannot recover the original arc sequence. (To

allow such recovery would require additional array space as well as

additional processing.)

In terms of best optimization time the sub-referent approach SUB/

DYNMIR is the clear winner. The next best approach is our primal simplex

variaut. It is interesting to note that members of the standard approach

(i.e., label tree) are almost always dominated by the best primal and

referent methods.

The value of a code as a subroutine is better reflected by total

solution time, since this time includes the time to set up the data

structure and return the solution (in the original data order). The

DYMMIR structure is no longer so attractive in this contextT-as when the

maximum flow problem is embedded as a subproblem in a larger solution

system--due to the obstacle it presents to recovering the original

problem order. instead, the best code in terms of minimum total solution

time is the SUB/SIXHIR implementation of the sub-referent method. It is

important to note, however, that theprimal simplex total solution time is

equal to SUB/FIXMIR on the transit grid problems. Thus, in view of the

reduced memory requirements of the primal approach, for transit planning

purposes SEQCS may be reasonably regarded as the best all around code.

Indeed, for investigations involving determinations of maximum flows be-

tween numerous source-terminal pairs in the same network, the primal code

may have an additional advantage over the other approaches. Specifically,

the primal code only has to absorb the set-up cost once, whereas the other

codes must incur this cost for each source-terminal pair.

The two most important limitations of the study are: (1) the largest

problem solved only had ten thousand arcs; and (2) all test problems were

artificially generated. The first limitation is due to memory space limi-

tations of the computed on which our tests were conducted, which allows aI.
user to access seventy thousand words of central memory. The requirement

of six arc length arrays for all of the label tree and referent method

implementations resulted in the ten thousand arcs limit. The primal codes,

72

which only use two arc length arrays, could of course solve substantially

larger problems on the same machine.

The second limitation (artificial test problems) was due to the

present inaccessibility of practical data for maximum flow problems,

though this inaccessibility promises to be removed in the near future.

However, we sought to minimize this limitation by designing the data base

of test problems to reflect some of the network topologies encountered in

real-world problems.

We envision two important types of extensions of this study: (1)

developing codes with re-start capabilities, and (2) developing codes to

handle very large problems by means of in-core out-of-core processing.

The re-start capability is important when the maximum flow between

multiple source-terminal pairs must be determined for the same network.

This capability would also be useful in planning studies involving

multiple sets of arc capacities for the same network. The in-core out-of-

core capability is important for the very large scale planning problems

faced by governmental transportation planners. It also is valuable to

sorme degree for solving moderate size problems on small to medium size

computers. Future investigations of codes embodying these capabilities

would be highly useful.

I.

1.

73

REFERENCES

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis
of Computer Algorithms. Addison-Wesley, 1975.

[2] R. D. Armstrong, D. Klingman, and D. Whitman, "Implementation and
Analysis of a Variant of the Dual Method for the Capacitated T ans-
shipment Problem," Research Report CCS 324, Center for Cybernetic
Studies, The University of Texas at Austin, 1978. To appear in EJOR.

[3] R. Barr, J. Elam, F. Glover, and D. Klingman "A Network Augmenting
Path Basis Algorithm for Transshipment Problems," Research Report
CCS 272, Center for Cybernetic Studies, The University of Texas at
Austin. To appear in An International Symposium Volume on Extremal
Methods and Systems Analysis.

[4] R. Barr, F. Glover, and D. Klingman, "Enhancements of Spanning Tree
Labeling Procedures for Network Optimization," INFOR 17, 1 (1979)
16-34.

[4a] R. S. Barr, F. Glover, and D. Klingman, "An Improved Version of the
Out-of-Kilter Method and a Comparative Study of Computer Codes,"
Mathematical Programming 7, (1974) 60-86.

L5] G. Bayer, "MAXFLOW, ACM Algorithm 324," Communications of the ACM,
11 (1968) 117.

[6] T. Cheung, "Computational Comparison of Eight Methods for the
Maximum Network Flow Problem," Technical Report 78-07, Department
of Computer Sciences, University of Ottawa, Ottawa, Ontario, 1978.

[7] W. H. Cunningham, "A Network Simplex Method." Mathematical Program-
ming, 11 (1976) 105-116.

[8] W. H. Cunningham, "Theoretical Properties of the Network Simplex
Method." Mathematics of Operations Research, 4 (1979) 196-208.

[9] G. B. Dantzig and D. R. Fulkerson, "On the Max-Flow Min-Cut Theorem
of Networks." Annals of Mathematical Studies, Princeton University
Press, Princeton, N.J. (1956) 215-221.

[10] R. Dial, F. Glover, D. Karney, and D. Klingman, "A Computational
Analysis of Alternative Algorithms and Labeling Techniques for
Finding Shortest Path Trees." Networks, (1979) 215-248.

1,

74

[11] E. A. Dinic, "Algorithm for Solution of a Problem of Maximum Flow
in a Network with Power Estimation." Soviet Math. Doklady, 11
(1970) 1277-1280.

[12] J. Edmonds and R. M. Karp, "Theoretical Improvements in Algorithmic
Efficiency for Network Flow Problems," Journal of the Association
for Computing Machinery, 19 (1972) 248-264.

[13] S. Even and R. E. Tarjan, "Network Flow and Testing Graph Connectivity."
SIAM Journal of Computing, 4 (1975) 507-518.

[14] C. 0. Fong and M. R. Rao, "Accelerated Labeling Algorithms for the
Maximal Flow Problem with Applications to Transportation and
Assignment Problems." Working Paper 7222, Graduate School of
Business, University of Rochester (1974).

[15] L. R. Ford and D. R. Fulkerson, "Maximal Flow Through a Network."
Canadiin Journal of Mathematics, 8 (1956) 399-404.

[16] L. R. Ford and D. R. Fulkerson, "A Simple Algorithm for Finding
Maximal Network Flows and an Application to the Hitchcock Problem."
Canadian .ournal of Mathematics, 9 (1957) 210-218.

[171 L. R. Ford'and D. R. Fulkerson, Flows in Networks. Princeton University
Press, Princeton, N.J. (1962).

[18] D. R. Fulkerson and G. B. Dantzig, "Computations of Maximal Flows in
Networks," Naval Research Logistics Quarterly, 2 (1955) 277-283.

[19] J. Gilsinn and C. Witzgall, "A Performance Comparison of Labeling
Algorithms for Calculating Shortest Path Trees." NBS Tech. Note
772, U.S. Department of Commerce (1973).

[20] F. Glover, D. Karney, and D. Klingman, "A Computational Study on
Start Procedures, Basis Change Criteria, and Solution Algorithms for
Transportation Problems," Management Science, 20 (1974) 793-813.

[21] F. Glover, D. Karney, and D. Klingman, "Implementation and Computa-
tional Comparisons of Primal, Dual, and Primal-Dual Computer Codes
for Minimum Cost Network Flow Problems," Networks, 4 (1974) 191-212.

[22] R. Helgason, J. Kennington, and J. Hall, "Primal Simplex Network
Codes: State-of-the-Art Implementation Technology," Technical
Report IEOR 76014, Department of Industrial Engineering and
Operations Research, Southern Methodist University (1976).

[23] E. L. Johnson, "Networks and Basic Solutions," Operations Research,
14 (1966) 619-623.

75

[24] A. V. Karzanov, "Determining the Maximal Flow in a Network by the
Method of Preflows." Soviet Math. Doklady, 15 (1972) 434-437.

[25] B: Kinariwala and A. G. Rao. "Flow Switching Approach to the Maximum
Flow Problem: I." Journal of the Association for Computing Machinery,
24 (1977) 630-645.

[26] D. Klingman, J. Mote, and D. Whitman, "Improving Flow Management and
Control Via Improving Shortest Path Analysis," Research Report CCS
322, Center for Cybernetic Studies, The University of Texas at Austin,
1978.

[27] P. M. Lin and B. J. Leon, "Improving the Efficiency of Labeling Algo-
rithms for Maximum Flow in Networks," Proceedings IEEE International
Symposium on Circuits and Systems, (1974) 162-166.

[28] V. M. Malhutra, M. P. Kumar, and S. N. Maheshwari, "An O(IVI 3) Algo-
rithm for Finding Maximum Flows in Networks." Information Processing
Letters, 7, 6 (1978) 277-278.

[29] J. Mulvey, "Column Weighting Factors and Other Enhancements to the
Augmented Threaded Index Method for Network Optimization," to appear
in Mathematical Programming.

[30] A. Nijenhuis and H. S. Wilf. Combinatorial Algorithms, Academic
Press (1975) 143-151.

[31] S. Phillips and M. I. Dessouky. "The Cut Search Algorithm with Arc
Capacities and Lower Bounds." Management Science, 25 (1979) 396-
404.

(32] V. Srinivasan and G. L. Thompson, "Accelerated Algorithms for Label-
ing and Relabeling Trees with Applications to Distribution Problems,"
Journal of the Association for Computing Machinery, 19 (1972) 712-
726.

[33] V. Srinivasan and G. L. Thompson, "Benefit-Cost Analysis of Coding
Techniques for the Primal Transportation Algorithms," Journal of
the Association for Computing Machinery, 20 (1973) 194-213.

[34] N. Zaden, "Theoretical Efficiency of the Edmonds-Karp Algorithm for
Computing Maximal Flows." Journal of the Association for Computing
Machinery, 19 (1972) 184-192.

'.

"1- II II' '" ' = , - - m:,

